71 resultados para meiotic karyotype


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The meiotic behavior of fourteen Passiflora taxa was analyzed. The species were grouped according to the n value (6, 9 and 12) for statistical studies. Some species presented tetravalent associations or univalent chromosomes in diakinesis, bivalent formation prevailing. The qui-square test revealed significant differences in the chiasma frequency among species for n = 9 and n = 6 groups. There was predominance of interstitial chiasmata in almost all studied species. The n = 12 group was the only one whose meiotic behavior was considered similar due to the quantity of chiasmata per cell, tendency of interstitial chiasma localization. Some species presented meiotic irregularities, such as laggard and precocious chromosomes in meiosis I. In telophase II the percentages of meiotic irregularities was low. Irregularities in the spindle orientation were presented in higher percentages in the end of meiosis II, and were also responsible for post-meiotic abnormal products. The irregularities observed during meiosis can have influence on the percentage of sterile pollen grains and success of interspecific crossings in Passiflora species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This report describes the karyotype of a Brazilian Diplopod species (Arthropoda), Sandalodesmus gasparae (Schubart, Acta Zool. Lilloana Inst. "Miguel Lillo" 2: 321-440,1944), collected from a termite mound Cornitermes bequaerti. This species has 2n = 12. The sex pair could not be distinguished.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The analysis of chromosomal abnormalities is important for the study of hematological neoplastic disorders since it facilitates classification of the disease. The ability to perform chromosome analysis of cryopreserved malignant marrow or peripheral blast cells is important for retrospective studies. In the present study, we compared the karyotype of fresh bone marrow cells (20 metaphases) to that of cells stored with a simplified cryopreservation method, evaluated the effect of the use of granulocyte-macrophage colony-stimulating factor (GM-CSF) as an in vitro mitotic index stimulator, and compared the cell viability and chromosome morphology of fresh and cryopreserved cells whenever possible (sufficient metaphases for analysis). Twenty-five bone marrow samples from 24 patients with hematological disorders such as acute myeloid leukemia, acute lymphoblastic leukemia, myelodysplastic syndrome, chronic myeloid leukemia, megaloblastic anemia and lymphoma (8, 3, 3, 8, 1, and 1 patients, respectively) were selected at diagnosis, at relapse or during routine follow-up and one sample was obtained from a bone marrow donor after informed consent. Average cell viability before and after freezing was 98.8 and 78.5%, respectively (P < 0.05). Cytogenetic analysis was successful in 76% of fresh cell cultures, as opposed to 52% of cryopreserved samples (P < 0.05). GM-CSF had no proliferative effect before or after freezing. The morphological aspects of the chromosomes in fresh and cryopreserved cells were subjectively the same. The present study shows that cytogenetic analysis of cryopreserved bone marrow cells can be a reliable alternative when fresh cell analysis cannot be done, notwithstanding the reduced viability and lower percent of successful analysis that are associated with freezing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The genus Heliconia is not much studied and the number of existing species in this genus is still uncertain. It is known that this number relies between 150 to 250 species. In Brazil, about 40 species are native and known by many different names. The objective of this paper was to characterize morphometrically and to identify the NOR (active nucleolus organizer regions) by Ag-NOR banding of chromosomes of Heliconia bihai (L) L. Root meristems were submitted to blocking treatment in an amiprofos-methyl (APM) solution, fixed in methanol-acetic acid solution for 24 hours, at least. The meristems were washed in distilled water and submitted to enzymatic digestion with pectinase enzyme. The slides were prepared by dissociation of the root meristem, dried in the air and also on hot plate at 50°C. Subsequently, some slides were submitted to 5% Giemsa stain for karyotype construction and to a solution of silver nitrate (AgNO3) 50% for Ag-NOR banding. The species H. bihai has 2n = 22 chromosomes, 4 pairs of submetacentric chromosomes and 7 pairs of metacentric chromosomes, and graded medium to short (3.96 to 0.67 μM), with the presence of active NOR in pairs 1 and 2 and interphase cells with 2 nucleoli. These are the features of a diploid species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE: To assess the cardiovascular features of Ullrich-Turner's syndrome using echocardiography and magnetic resonance imaging, and to correlate them with the phenotype and karyotype of the patients. The diagnostic concordance between the 2 methods was also assessed. METHODS: Fifteen patients with the syndrome were assessed by echocardiography and magnetic resonance imaging (cardiac chambers, valves, and aorta). Their ages ranged from 10 to 28 (mean of 16.7) years. The karyotype was analyzed in 11 or 25 metaphases of peripheral blood lymphocytes, or both. RESULTS: The most common phenotypic changes were short stature and spontaneous absence of puberal development (100%); 1 patient had a cardiac murmur. The karyotypes detected were as follows: 45,X (n=7), mosaics (n=5), and deletions (n=3). No echocardiographic changes were observed. In regard to magnetic resonance imaging, coarctation and dilation of the aorta were found in 1 patient, and isolated dilation of the aorta was found in 4 patients. CONCLUSION: The frequencies of coarctation and dilation of the aorta detected on magnetic resonance imaging were similar to those reported in the literature (5.5% to 20%, and 6.3% to 29%, respectively). This confirmed the adjuvant role of magnetic resonance imaging to Doppler echocardiography for diagnosing cardiovascular alterations in patients with Ullrich-Turner's syndrome.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present paper the behavior of the heterochromoso-mes in the course of the meiotic divisions of the spermatocytes in 15 species of Orthoptera belonging to 6 different families was studied. The species treated and their respective chromosome numbers were: Phaneropteridae: Anaulacomera sp. - 1 - 2n = 30 + X, n +15+ X and 15. Anaulacomera sp. - 2 - 2n - 30 + X, n = 15+ X and 15. Stilpnochlora marginella - 2n = 30 + X, n = 15= X and 15. Scudderia sp. - 2n = 30 + X, n = 15+ X and 15. Posldippus citrifolius - 2n = 24 + X, n = 12+X and 12. Acrididae: Osmilia violacea - 2n = 22+X, n = 11 + X and 11. Tropinotus discoideus - 2n = 22+ X, n = 11 + X and 11. Leptysma dorsalis - 2n = 22 + X, n = 11-J-X and 11. Orphulella punctata - 2n = 22-f X, n = 11 + X and 11. Conocephalidae: Conocephalus sp. - 2n = 32 + X, n = 16 + X and 16. Proscopiidae: Cephalocoema zilkari - 2n = 16 + X, n = 8+ X and 8. Tetanorhynchus mendesi - 2n = 16 + X, n = 8+X and 8. Gryliidae: Gryllus assimilis - 2n = 28 + X, n = 14+X and 14. Gryllodes sp. - 2n = 20 + X, n = 10- + and 10. Phalangopsitidae: Endecous cavernicola - 2n = 18 +X, n = 94-X and 9. It was pointed out by the present writer that in the Orthoptera similarly to what he observed in the Hemiptera the heterochromosome in the heterocinetic division shows in the same individual indifferently precession, synchronism or succession. This lack of specificity is therefore pointed here as constituting the rule and not the exception as formerly beleaved by the students of this problem, since it occurs in all the species referred to in the present paper and probably also m those hitherto investigated. The variability in the behavior of the heterochromosome which can have any position with regard to the autosomes even in the same follicle is attributed to the fact that being rather a stationary body it retains in anaphase the place it had in metaphase. When this place is in the equator of the cell the heterochromosome will be left behind as soon as anaphase begins (succession). When, on the contrary, laying out of this plane as generally happens (precession) it will sooner be reached (synchronism) or passed by the autosomes (succession). Due to the less kinetic activity of the heterochromosome it does not orient itself at metaphase remaining where it stands with the kinetochore looking indifferently to any direction. At the end of anaphase and sometimes earlier the heterochromosome begins to show mitotic activities revealed by the division of its body. Then, responding to the influence of the nearer pole it moves to it being enclosed with the autosomes in the nucleus formed there. The position of the heterochromosome in the cell is explained in the following manner: It is well known that the heterochromosome of the Orthoptera is always at the periphery of the nucleus, just beneath the nuclear membrane. This position may be any in regard of the axis of the dividing cell, so that if one of the poles of the spindle comes to coincide with it, the heterochromosome will appear at this pole in the metaphasic figures. If, on the other hand, the angle formed by the axis of the spindle with the ray reaching the heterochromosome increases the latter will appear in planes farther and farther apart from the nearer pole until it finishes by being in the equatorial plane. In this way it is not difficult to understand precession, synchronism or succession. In the species in which the heterochromosome is very large as it generally happens in the Phaneropteridae, the positions corresponding to precession are much more frequent. This is due to the fact that the probabilities for the heterochromosome taking an intermediary position between the equator and the poles at the time the spindle is set up are much greater than otherwise. Moreover, standing always outside the spindle area it searches for a place exactly where this area is larger, that is, in the vicinity of the poles. If it comes to enter the spindle area, what has very little probability, it would be, in virtue of its size, propelled toward the pole by the nearing anaphasic plate. The cases of succession are justly those in which the heterochromosome taking a position parallelly to the spindle axis it can adjust its large body also in the equator or in its proximity. In the species provided with small heterochromosome (Gryllidae, Conocephalidae, Acrididae) succession is found much more frequently because here as in the Hemiptera (PIZA 1945) the heterochromosome can equally take equatorial or subequatorial positions, and, furthermore, when in the spindle area it does offer no sereous obstacle to the passage of the autosomes. The position of the heterochromosome at the periphery of the nucleus at different stages may be as I suppose, at least in part a question of density. The less colourability and the surface irregularities characteristic of this element may well correspond to a less degree of condensation which may influence passive movements. In one of the species studied here (Anaulacomera sp.- 1) included in the Phaneropteridae it was observed that the plasmosome is left motionless in the spindle as the autosomes move toward the poles. It passes to one of the secondary spermatocytes being not included in its nucleus. In the second division it again passes to one of the cells being cast off when the spermatid is being transformed into spermatozoon. Thus it is regularly found among the tails of the spermatozoa in different stages of development. In the opinion of the present writer, at least in some cases, corpuscles described as Golgi body's remanents are nothing more than discarded plasmosomes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

1) The first part deals with the different processes which may complicate Mendelian segregation and which may be classified into three groups, according to BRIEGER (1937b) : a) Instability of genes, b) Abnormal segregation due to distur- bances during the meiotic divisions, c) obscured segregation, after a perfectly normal meiosis, caused by elimination or during the gonophase (gametophyte in higher plants), or during zygophase (sporophyte). Without entering into detail, it is emphasized that all the above mentioned complications in the segregation of some genes may be caused by the action of other genes. Thus in maize, the instability of the Al factor is observed only when the gene dt is presente in the homozygous conditions (RHOADES 1938). In another case, still under observation in Piracicaba, an instability is observed in Mirabilis with regard to two pairs of alleles both controlling flower color. Several cases are known, especially in corn, where recessive genes, when homozigous, affect the course of meiosis, causing asynapsis (asyndesis) (BEADLE AND MC CLINTOCK 1928, BEADLE 1930), sticky chromosomes (BEADLE 1932), supermunmerary divisions (BEADLE 1931). The most extreme case of an obscured segregatiou is represented by the action of the S factors in self stetrile plants. An additional proof of EAST AND MANGELSDORF (1925) genetic formula of self sterility has been contributed by the studies on Jinked factors in Nicotina (BRIEGER AND MANGELSDORF (1926) and Antirrhinum (BRIEGER 1930, 1935), In cases of a incomplete competition and selection between pollen tubes, studies of linked indicator-genes are indispensable in the genetic analysis, since it is impossible to analyse the factors for gametophyte competition by direct aproach. 2) The flower structure of corn is explained, and stated that the particularites of floral biology make maize an excellent object for the study of gametophyte factors. Since only one pollen tube per ovule may accomplish fertilization, the competition is always extremely strong, as compared with other species possessing multi-ovulate ovaries. The lenght of the silk permitts the study of pollen tube competitions over a varying distance. Finally the genetic analysis of grains characters (endosperm and aleoron) simpliflen the experimental work considerably, by allowing the accumulation of large numbers for statistical treatment. 3) The four methods for analyzing the naturing of pollen tube competition are discussed, following BRIEGER (1930). Of these the first three are: a) polinization with a small number of pollen grains, b) polinization at different times and c) cut- ting the style after the faster tubes have passe dand before the slower tubes have reached the point where the stigma will be cut. d) The fourth method, alteration of the distatice over which competition takes place, has been applied largely in corn. The basic conceptions underlying this process, are illustrated in Fig. 3. While BRINK (1925) and MANGELSDORF (1929) applied pollen at different levels on the silks, the remaining authors (JONES, 1922, MANGELSDORF 1929, BRIEGER, at al. 1938) have used a different process. The pollen was applied as usual, after removing the main part of the silks, but the ears were divided transversally into halves or quarters before counting. The experiments showed generally an increase in the intensity of competition when there was increase of the distance over which they had to travel. Only MANGELSDORF found an interesting exception. When the distance became extreme, the initially slower tubes seemed to become finally the faster ones. 4) Methods of genetic and statistical analysis are discussed, following chiefly BRIEGER (1937a and 1937b). A formula is given to determine the intensity of ellimination in three point experiments. 5) The few facts are cited which give some indication about the physiological mechanism of gametophyte competition. They are four in number a) the growth rate depends-only on the action of gametophyte factors; b) there is an interaction between the conductive tissue of the stigma or style and the pollen tubes, mainly in self-sterile plants; c) after self-pollination necrosis starts in the tissue of the stigma, in some orchids after F. MÜLLER (1867); d) in pollon mixtures there is an inhibitory interaction between two types of pollen and the female tissue; Gossypium according to BALLS (1911), KEARNEY 1923, 1928, KEARNEY AND HARRISON (1924). A more complete discussion is found in BRIEGER 1930). 6) A list of the gametophyte factors so far localized in corn is given. CHROMOSOME IV Ga 1 : MANGELSDORF AND JONES (1925), EMERSON 1934). Ga 4 : BRIEGER (1945b). Sp 1 : MANGELSDORF (1931), SINGLETON AND MANGELSDORF (1940), BRIEGER (1945a). CHROMOSOME V Ga 2 : BRIEGER (1937a). CHROMOSOME VI BRIEGER, TIDBURY AND TSENG (1938) found indications of a gametophyte factor altering the segregation of yellow endosperm y1. CHROMOSOME IX Ga 3 : BRIEGER, TIDBURY AND TSENG (1938). While the competition in these six cases is essentially determined by one pair of factors, the degree of elimination may be variable, as shown for Ga2 (BRIEGER, 1937), for Ga4 (BRIEGER 1945a) and for Spl (SINGLETON AND MANGELSDORF 1940, BRIEGER 1945b). The action of a gametophyte factor altering the segregation of waxy (perhaps Ga3) is increased by the presence of the sul factor which thus acts as a modifier (BRINCK AND BURNHAM 1927). A polyfactorial case of gametophyte competition has been found by JONES (1922) and analysed by DEMEREC (1929) in rice pop corn which rejects the pollen tubes of other types of corn. Preference for selfing or for brothers-sister mating and partial elimination of other pollen tubes has been described by BRIEGER (1936). 7) HARLAND'S (1943) very ingenious idea is discussed to use pollen tube factors in applied genetics in order to build up an obstacle to natural crossing as a consequence of the rapid pollen tube growth after selfing. Unfortunately, HARLAND could not obtain the experimental proof of the praticability of his idea, during his experiments on selection for minor modifiers for pollen tube grouth in cotton. In maize it should be possible to employ gametophyte factors to build up lines with preference for crossing, though the method should hardly be of any practical advantage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper an account is given of the principal facts observer in the meiosis of Euryophthalmus rufipennis Laporte which afford some evidence in favour of the view held by the present writer in earlier publications regarding the existence of two terminal kinetochores in Hem ip ter an chromosomes as well as the transverse division of the chromosomes. Spermatogonial mitosis - From the beginning of prophase until metaphase nothing worthy of special reference was observed. At anaphase, on the contrary, the behavior of the chromosomes deserves our best attention. Indeed, the chromoso- mes, as soon as they begin to move, they show both ends pronouncedly turned toward the poles to which they are connected by chromosomal fibres. So a premature and remarkable bending of the chromosomes not yet found in any other species of Hemiptera and even of Homoptera points strongly to terminally localized kinetochores. The explanation proposed by HUGHES-SCHRADER and RIS for Nautococcus and by RIS for Tamalia, whose chromosomes first become bent late in anaphase do not apply to chromosomes which initiate anaphase movement already turned toward the corresponding pole. In the other hand, the variety of positions assumed by the anaphase chromosomes of Euryophthalmus with regard to one another speaks conclusively against the idea of diffuse spindle attachments. First meiotic division - Corresponding to the beginning of the story of the primary spermatocytes cells are found with the nucleus entirelly filled with leptonema threads. Nuclei with thin and thick threads have been considered as being in the zygotente phase. At the pachytene stage the bivalents are formed by two parallel strands clearly separated by a narrow space. The preceding phases differ in nothing from the corresponding orthodox ones, pairing being undoubtedly of the parasynaptic type. Formation of tetrads - When the nuclei coming from the diffuse stage can be again understood the chromosomes reappear as thick threads formed by two filaments intimately united except for a short median segment. Becoming progressively shorter and thicker the bivalents sometimes unite their extremities forming ring-shaped figures. Generally, however, this does not happen and the bivalents give origin to more or less condensed characteristic Hemipteran tetrads, bent at the weak median region. The lateral duplicity of the tetrads is evident. At metaphase the tetrads are still bent and are connected with both poles by their ends. The ring-shaped diakinesis tetrads open themselves out before metaphase, showing in this way that were not chiasmata that held their ends together. Anaphase proceeds as expected. If we consider the median region of the tetrads as being terminalized chiasmata, then the chromosomes are provided with a single terminal kinetochore. But this it not the case. A critical analysis of the story of the bivalents before and after the diffuse stage points to the conclusion that they are continuous throughout their whole length. Thence the chromosomes are considered as having a kinetochore at each end. Orientation - There are some evidences that Hemipteran chromosomes are connected by chiasmata. If this is true, the orientation of the tetrads may be understood in the following manner: Chiasmata being hindered to scape by the terminal kinetochores accumulate at the ends of the tetrads, where condensation begins. Repulsion at the centric ends being prevented by chiasmata the tetrads orient themselves as if they were provided with a single kinetochore at each extremity, taking a position parallelly to the spindle axis. Anaphase separation - Anaphase separation is consequently due to a transverse division of the chromosomes. Telophase and secund meiotic division - At telophase the kinetochore repeli one another following the moving apart of the centosomes, the chiasmata slip toward the acentric extremities and the chromosomes rotate in order to arrange themselves parallelly to the axis of the new spindle. Separation is therefore throughout the pairing plane. Origin of the dicentricity of the chromosomes - Dicentricity of the chromosomes is ascribed to the division of the kinetochore of the chromosomes reaching the poles followed by separation and distension of the chromatids which remain fused at the acentric ends giving thus origin to terminally dicentric iso-chromosomes. Thence, the transverse division of the chromosomes, that is, a division through a plane perpendicular to the plane of pairing, actually corresponds to a longitudinal division realized in the preceding generation. Inactive and active kinetochores - Chromosomes carrying inactive kinetochore is not capable of orientation and active anaphasic movements. The heterochromosome of Diactor bilineatus in the division of the secondary spermatocytes is justly in this case, standing without fibrilar connection with the poles anywhere in the cell, while the autosomes are moving regularly. The heterochromosome of Euryophthalmus, on the contrary, having its kinetochores perfectly active ,is correctly oriented in the plane of the equator together with the autosomes and shows terminal chromosomal connection with both poles. Being attracted with equal strength by two opposite poles it cannot decide to the one way or the other remaining motionless in the equator until some secondary causes (as for instances a slight functional difference between the kinetochores) intervene to break the state of equilibrium. When Yiothing interferes to aide the heterochromosome in choosing its way it distends itself between the autosomal plates forming a fusiform bridge which sometimes finishes by being broken. Ordinarily, however, the bulky part of the heterochromosome passes to one pole. Spindle fibers and kinetic activity of chromosomal fragments - The kinetochore is considered as the unique part of the chromosome capable of being influenced by other kinetochore or by the poles. Under such influence the kinetochore would be stimulated or activited and would elaborate a sort of impulse which would run toward the ends. In this respect the chromosome may be compared to a neüròn, the cell being represented by the kinetochore and the axon by the body of the chromosome. Due to the action of the kinetochore the entire chromosome becomes also activated for performing its kinetic function. Nothing is known at present about the nature of this activation. We can however assume that some active chemical substance like those produced by the neuron and transferred to the effector passes from the kinetochore to the body of the chromosome runing down to the ends. And, like an axon which continues to transmit an impulse after the stimulating agent has suspended its action, so may the chromosome show some residual kinetic activity even after having lost its kinetochore. This is another explanation for the kinetic behavior of acentric chromosomal fragmehs. In the orthodox monocentric chromosomes the kinetic activity is greater at the kinetochore, that is, at the place of origin of the active substance than at any other place. In chromosomes provided with a kinetochore at each end the entire body may become active enough to produce chromosomal fibers. This is probably due to a more or less uniform distribution and concentration of the active substance coming simultaneously from both extremities of the chromosome.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work presents the description and chromosome number of Urostreptus atrobrunneus sp. nov. The genus until now had not been registered yet in the São Paulo State, Brazil. The meiotic analysis showed that the species presents 2n=24, XY. The C-banding revealed large blocks of constitutive heterochromatin and two heteromorphic chromosomal pairs, one of them corresponding to the sexual pair.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new molecular phylogeny for akodontine rodents from Brazil was proposed. The phylogenetic tree was enriched with the area of occurrence and with information on the karyotype of the samples. Based on this enriched tree, and with a described methodology, hypotheses were proposed on the karyotype and area of occurrence of the ancestors of each Clade. Thus it was possible to discuss hypotheses on chromosome evolution of the group, and on dispersion events from the "area of original differentiation" of akodontines in the Andes. Chromosome evolution started with high diploid numbers (2n=52) and showed a tendency to reduction (until 2n=14 in more recent clades). Independent side-branches of the tree showed 2n reduction and in one case the 2n increased. At least four dispersion events from the Andes down to South-eastern Brazil were proposed. The results should suggest the direction of new studies on comparative karyology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the Atlantic forest of Rio de Janeiro, Callithrix aurita (É. Geoffroy in Humboldt, 1812) is a native species vulnerable to extinction and C. jacchus (Linnaeus, 1758) and C. penicillata (É. Geoffroy, 1812) are invasive species. The major threats to the native species are habitat degradation and hybridization, although there are currently no genetic data about natural hybrids available. Previous studies have revealed that species of the Callithrix genus are extremely homogeneous in their karyotypes with the exceptions of the morphology and size of the Y chromosome and its nucleolar organizer region (NOR) banding pattern. Three male marmosets captured in the wild in Guapimirim municipality, Rio de Janeiro, Brazil, considered as possible hybrids between C. aurita and C. jacchus or C. penicillata on the basis of pelage pattern, were cytogenetically studied. Metaphase chromosomes were obtained by using short-term lymphocyte cultures and Ag-NOR staining was performed. The hybrids karyotypes were 2n=46, 14 uni- and 30 bi-armed autosomes, a median size submetacentric X and NOR bearing autosomes, being compatible with that observed for the genus. In the three individuals studied, Y chromosomes were similar to those found for C. aurita, without NORs. The data obtained suggest the involvement of C. aurita in natural hybridization with one of the invasive species. We discuss the possible consequences of this hybridization.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Different populations of Pseudonannolene strinatii Mauriès, 1974 collected from three caves in Iporanga, state of São Paulo, were cytogenetically compared using techniques of conventional coloration, C-banding and silver nitrate impregnation. Specimens were morphologically similar and small cytogenetic differences were observed between the populations with relation to the distribution of constitutive heterochromatin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The action of colchicine upon the spermatogenesis of Triatoma infestans, (Hemipt. Heteroptera), has been studied and the different categories of giant spermatids that appear during the treatment have been compared with the nuclear volumes of the whole series of normal spermatogenetic stages. The following facts have been ascertained: 1) 4 hours after the treatment the gonial mitotic metaphases, and the 1st. and 2nd. metaphases of meiosis are stopped. The prophasic stages of meiosis and diakynesis appear to be normal. After 9 days of treatment, all the tetrads are broken in the meiotic metaphases and the cells appear with 44 and 22 chromosomes respectively, scattered in the cytoplasm. 2) At 9 days, practically all spermatogenetic stages have disappeared except for a few cysts of spermatogonia, and practically the whole testicle is full of cysts of spermatozoa and spermatid, with some large zones of necrosis with pycnotic nuclei. The spermatids appear to be of different sizes and the statistical analysis of the nuclear volumes gives a polymodal hystogram with 4 modes, whose volumes are in the ratio of 1:2:4:8. Ripe spermatozoa seem to have a certain volume variability, that has not been possible to analyse quantitatively. All these facts confirm what DOOLEY found in the colchicinized Orthoptera testicle. 3) The caryometric analysis conducted statistically on the normal stages of the spermatogenesis (resting spermatogonia, gonial prophases, leptotene, "confused stage", diakynesis, and spermatid) revealed the following facts: a) Considering the volume of the resting, spermatogonia as 1, their mitotic prophases have a volume of 2. Some rare prophases appear to have a volume of 4 and probably belong to tetraployd spermatogonia normally present in the testicle of Hemiptera. b) The first spermatocyte at the beginning of the auxocitary growth (leptotene) has a volume of 2, which is equal to that of them gonial prophase. It grows further during the "confused stage" and reduplicates, reaching thus the volume of 4. Diakynesis has a rather variable nuclear volume and it is higher than volume 4. This is probably of physico-chemical nature and not a growth increase. c) The spermatid at the beginning of the spermiogenetic process has a volume of 1 which is very constant and homogeneous. 4) These results can be summarized concluding that the meiotic process begins from a spermatogonium at the end of his mitotic interphasic growth (vol. 2) and instead of entering into the mitotic prophase transforms itself into the leptotene spermatocyte. During the diplotene ("confused stage") the volume of the nucleus doubles once more and reaches volume 4. In consequence of the two successive meiotic divisions the spermatid, although having an haploid number of chromosomes, has a nuclear volume of 1, just like the diploid spermatogonium. The interpretation of this strange result probably comes from the existence of the "tertiary split" in the chromosomes of the haploid set, that has been illustrated in the Hemiptera by HUGUES SCHRADER and in Orthoptera by MICKEY and co-workers. The tertiary split indicates that the chromosomes of the haploid set are constituted from almost two chromonemata, and this double constitution corresponds to the double cycle of reduplication that takes place during the spermatogenesis starting from the resting gonia. In Triatoma infestans the tertiary split appears in the chromosomes in the 1st. and 2nd. metaphases and in the diakynesis. In the blocked metaphases at the 9th. day of colchicinization some of the 44 elements scattered in the cytoplasm, show, when properly oriented, the split very clearly. Some new and strange facts revealed by SCHRADER and LEUCHTEMBERGER in Arvelius suggest the possibility of other interpretations of the rhythmic growth in special cases. There appears the necessity of more knowledge about the multiple or simple constitution of the chromosomes in somatic and spermatogonial mitosis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several cytogenetic traits were tested a species diagnostic characters on five triatomine species: Rhodnius pictipes, R. nasutus, R. robustus, Triatoma matogrossensis and T. pseudomaculata. Four of them are described for the first time. The detailed analysis of the meiotic process and the application of C-banding allowed us to identify seven cytogenetic characters wich result useful to characterize and differentiate triatomine species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Extensive chromosome size polymorphism in Plasmodium berghei in vivo mitotic multiplication. Size differences between homologous chromosomes mainly involve rearrangements in the subtelomeric regions while internal chromosomal regions are more conserved. Size differences are almost exclusively due to differences in the copy number of a 2.3 kb subtelomeric repeat unit. Not only deletion of 2.3 kb repeats occurs, but addition of new copies of this repeat sometimes results in the formation of enlarged chromosomes. Even chromosomes which originally lack 2.3 kb repeats, can acquire these during mitotic multiplication. In one karyotype mutant, 2.3 kb repeats were inserted within one of the original telomeres of chromosome 4, creating an internal stretch oftelomeric repeats. Chromosome translocation can contribute to chromosome size polymorphism as well We found a karyotype mutant in which chromosome 7 with a size of about 1.4 Mb is translocated to chromosome 13/14 with a size of about 3 Mb, resulting in a rearranged chromosome, which was shown to contain a junction between internal DNA sequences of chromosome 13/14 and subtelomeric 2.3 kb repeats of chromosome 7. In this mutant a new chromosome of 1.4 Mb is present which consists of part of chromosome 13/14.