51 resultados para mean square error
Resumo:
This study developed and validated a method for moisture determination in artisanal Minas cheese, using near-infrared spectroscopy and partial-least-squares. The model robustness was assured by broad sample diversity, real conditions of routine analysis, variable selection, outlier detection and analytical validation. The model was built from 28.5-55.5% w/w, with a root-mean-square-error-of-prediction of 1.6%. After its adoption, the method stability was confirmed over a period of two years through the development of a control chart. Besides this specific method, the present study sought to provide an example multivariate metrological methodology with potential for application in several areas, including new aspects, such as more stringent evaluation of the linearity of multivariate methods.
Resumo:
The aim of this study was to compare the hydrographically conditioned digital elevation models (HCDEMs) generated from data of VNIR (Visible Near Infrared) sensor of ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer), of SRTM (Shuttle Radar Topography Mission) and topographical maps from IBGE in a scale of 1:50,000, processed in the Geographical Information System (GIS), aiming the morphometric characterization of watersheds. It was taken as basis the Sub-basin of São Bartolomeu River, obtaining morphometric characteristics from HCDEMs. Root Mean Square Error (RMSE) and cross validation were the statistics indexes used to evaluate the quality of HCDEMs. The percentage differences in the morphometric parameters obtained from these three different data sets were less than 10%, except for the mean slope (21%). In general, it was observed a good agreement between HCDEMs generated from remote sensing data and IBGE maps. The result of HCDEM ASTER was slightly higher than that from HCDEM SRTM. The HCDEM ASTER was more accurate than the HCDEM SRTM in basins with high altitudes and rugged terrain, by presenting frequency altimetry nearest to HCDEM IBGE, considered standard in this study.
Resumo:
Design of flight control laws, verification of performance predictions, and the implementation of flight simulations are tasks that require a mathematical model of the aircraft dynamics. The dynamical models are characterized by coefficients (aerodynamic derivatives) whose values must be determined from flight tests. This work outlines the use of the Extended Kalman Filter (EKF) in obtaining the aerodynamic derivatives of an aircraft. The EKF shows several advantages over the more traditional least-square method (LS). Among these the most important are: there are no restrictions on linearity or in the form which the parameters appears in the mathematical model describing the system, and it is not required that these parameters be time invariant. The EKF uses the statistical properties of the process and the observation noise, to produce estimates based on the mean square error of the estimates themselves. Differently, the LS minimizes a cost function based on the plant output behavior. Results for the estimation of some longitudinal aerodynamic derivatives from simulated data are presented.
Resumo:
In the present paper we discuss the development of "wave-front", an instrument for determining the lower and higher optical aberrations of the human eye. We also discuss the advantages that such instrumentation and techniques might bring to the ophthalmology professional of the 21st century. By shining a small light spot on the retina of subjects and observing the light that is reflected back from within the eye, we are able to quantitatively determine the amount of lower order aberrations (astigmatism, myopia, hyperopia) and higher order aberrations (coma, spherical aberration, etc.). We have measured artificial eyes with calibrated ametropia ranging from +5 to -5 D, with and without 2 D astigmatism with axis at 45º and 90º. We used a device known as the Hartmann-Shack (HS) sensor, originally developed for measuring the optical aberrations of optical instruments and general refracting surfaces in astronomical telescopes. The HS sensor sends information to a computer software for decomposition of wave-front aberrations into a set of Zernike polynomials. These polynomials have special mathematical properties and are more suitable in this case than the traditional Seidel polynomials. We have demonstrated that this technique is more precise than conventional autorefraction, with a root mean square error (RMSE) of less than 0.1 µm for a 4-mm diameter pupil. In terms of dioptric power this represents an RMSE error of less than 0.04 D and 5º for the axis. This precision is sufficient for customized corneal ablations, among other applications.
Resumo:
Premenstrual syndrome and premenstrual dysphoric disorder (PMDD) seem to form a severity continuum with no clear-cut boundary. However, since the American Psychiatric Association proposed the research criteria for PMDD in 1994, there has been no agreement about the symptomatic constellation that constitutes this syndrome. The objective of the present study was to establish the core latent structure of PMDD symptoms in a non-clinical sample. Data concerning PMDD symptoms were obtained from 632 regularly menstruating college students (mean age 24.4 years, SD 5.9, range 17 to 49). For the first random half (N = 316), we performed principal component analysis (PCA) and for the remaining half (N = 316), we tested three theory-derived competing models of PMDD by confirmatory factor analysis. PCA allowed us to extract two correlated factors, i.e., dysphoric-somatic and behavioral-impairment factors. The two-dimensional latent model derived from PCA showed the best overall fit among three models tested by confirmatory factor analysis (c²53 = 64.39, P = 0.13; goodness-of-fit indices = 0.96; adjusted goodness-of-fit indices = 0.95; root mean square residual = 0.05; root mean square error of approximation = 0.03; 90%CI = 0.00 to 0.05; Akaike's information criterion = -41.61). The items "out of control" and "physical symptoms" loaded conspicuously on the first factor and "interpersonal impairment" loaded higher on the second factor. The construct validity for PMDD was accounted for by two highly correlated dimensions. These results support the argument for focusing on the core psychopathological dimension of PMDD in future studies.
Resumo:
The combined influence of tempo and mode on emotional responses to music was studied by crossing 7 changes in mode with 3 changes in tempo. Twenty-four musicians aged 19 to 25 years (12 males and 12 females) and 24 nonmusicians aged 17 to 25 years (12 males and 12 females) were required to perform two tasks: 1) listening to different musical excerpts, and 2) associating an emotion to them such as happiness, serenity, fear, anger, or sadness. ANOVA showed that increasing the tempo strongly affected the arousal (F(2,116) = 268.62, mean square error (MSE) = 0.6676, P < 0.001) and, to a lesser extent, the valence of emotional responses (F(6,348) = 8.71, MSE = 0.6196, P < 0.001). Changes in modes modulated the affective valence of the perceived emotions (F(6,348) = 4.24, MSE = 0.6764, P < 0.001). Some interactive effects were found between tempo and mode (F (1,58) = 115.6, MSE = 0.6428, P < 0.001), but, in most cases, the two parameters had additive effects. This finding demonstrates that small changes in the pitch structures of modes modulate the emotions associated with the pieces, confirming the cognitive foundation of emotional responses to music.
Resumo:
Potato pulp waste (PPW) drying was investigated under different experimental conditions (temperatures from 50 to 70 °C and air flow from 0.06 to 0.092 m³ m- 2 s- 1) as a possible way to recover the waste generated by potato chip industries and to select the best-fit model to the experimental results of PPW drying. As a criterion to evaluate the fitting of mathematical models, a method based on the sum of the scores assigned to the four evaluated statistical parameters was used: regression coefficient (R²), relative mean error P (%), root mean square error (RMSE), and reduced chi-square (χ²). The results revealed that temperature and air velocity are important parameters to reduce PPW drying time. The models Midilli and Diffusion had the lowest sum values, i.e., with the best fit to the drying data, satisfactorily representing the drying kinetics of PPW.
Resumo:
This paper focused on four alternatives of analysis of experiments in square lattice as far as the estimation of variance components and some genetic parameters are concerned: 1) intra-block analysis with adjusted treatment and blocks within unadjusted repetitions; 2) lattice analysis as complete randomized blocks; 3) intrablock analysis with unadjusted treatment and blocks within adjusted repetitions; 4) lattice analysis as complete randomized blocks, by utilizing the adjusted means of treatments, obtained from the analysis with recovery of interblock information, having as mean square of the error the mean effective variance of this same analysis with recovery of inter-block information. For the four alternatives of analysis, the estimators and estimates were obtained for the variance components and heritability coefficients. The classification of material was also studied. The present study suggests that for each experiment and depending of the objectives of the analysis, one should observe which alternative of analysis is preferable, mainly in cases where a negative estimate is obtained for the variance component due to effects of blocks within adjusted repetitions.
Resumo:
In this work the evaluation of the dissolution profile of captopril-hydrochlorothiazide and zidovudine-lamivudine associations were carried out by multivariate spectroscopic method. The models were developed by partial least square regression from 20 synthetic mixtures using mean-centered spectral data. The external validation was accomplished with 5 synthetic mixtures shown mean prevision error of about 1%. Good agreement was observed in the analyses of commercial drugs (content uniformity and dissolution profile), considering the results obtained by the standard chromatographic method, with prevision error lower than 10%.
Resumo:
The quantitative structure property relationship (QSPR) for the boiling point (Tb) of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs) was investigated. The molecular distance-edge vector (MDEV) index was used as the structural descriptor. The quantitative relationship between the MDEV index and Tb was modeled by using multivariate linear regression (MLR) and artificial neural network (ANN), respectively. Leave-one-out cross validation and external validation were carried out to assess the prediction performance of the models developed. For the MLR method, the prediction root mean square relative error (RMSRE) of leave-one-out cross validation and external validation was 1.77 and 1.23, respectively. For the ANN method, the prediction RMSRE of leave-one-out cross validation and external validation was 1.65 and 1.16, respectively. A quantitative relationship between the MDEV index and Tb of PCDD/Fs was demonstrated. Both MLR and ANN are practicable for modeling this relationship. The MLR model and ANN model developed can be used to predict the Tb of PCDD/Fs. Thus, the Tb of each PCDD/F was predicted by the developed models.
Resumo:
The objective of this paper was to evaluate the potential of neural networks (NN) as an alternative method to the basic epidemiological approach to describe epidemics of coffee rust. The NN was developed from the intensities of coffee (Coffea arabica) rust along with the climatic variables collected in Lavras-MG between 13 February 1998 and 20 April 2001. The NN was built with climatic variables that were either selected in a stepwise regression analysis or by the Braincel® system, software for NN building. Fifty-nine networks and 26 regression models were tested. The best models were selected based on small values of the mean square deviation (MSD) and of the mean prediction error (MPE). For the regression models, the highest coefficients of determination (R²) were used. The best model developed with neural networks had an MSD of 4.36 and an MPE of 2.43%. This model used the variables of minimum temperature, production, relative humidity of the air, and irradiance 30 days before the evaluation of disease. The best regression model was developed from 29 selected climatic variables in the network. The summary statistics for this model were: MPE=6.58%, MSE=4.36, and R²=0.80. The elaborated neural networks from a time series also were evaluated to describe the epidemic. The incidence of coffee rust at four previous fortnights resulted in a model with MPE=4.72% and an MSD=3.95.
Resumo:
Background:Diabetes affects approximately 250 million people in the world. Cardiovascular autonomic neuropathy is a common complication of diabetes that leads to severe postural hypotension, exercise intolerance, and increased incidence of silent myocardial infarction.Objective:To determine the variability of heart rate (HR) and systolic blood pressure (SBP) in recently diagnosed diabetic patients.Methods:The study included 30 patients with a diagnosis of type 2 diabetes of less than 2 years and 30 healthy controls. We used a Finapres® device to measure during five minutes beat-to-beat HR and blood pressure in three experimental conditions: supine position, standing position, and rhythmic breathing at 0.1 Hz. The results were analyzed in the time and frequency domains.Results:In the HR analysis, statistically significant differences were found in the time domain, specifically on short-term values such as standard deviation of NN intervals (SDNN), root mean square of successive differences (RMSSD), and number of pairs of successive NNs that differ by more than 50 ms (pNN50). In the BP analysis, there were no significant differences, but there was a sympathetic dominance in all three conditions. The baroreflex sensitivity (BRS) decreased in patients with early diabetes compared with healthy subjects during the standing maneuver.Conclusions:There is a decrease in HR variability in patients with early type 2 diabetes. No changes were observed in the BP analysis in the supine position, but there were changes in BRS with the standing maneuver, probably due to sympathetic hyperactivity.
Estimation of surface roughness in a semiarid region from C-band ERS-1 synthetic aperture radar data
Resumo:
In this study, we investigated the feasibility of using the C-band European Remote Sensing Satellite (ERS-1) synthetic aperture radar (SAR) data to estimate surface soil roughness in a semiarid rangeland. Radar backscattering coefficients were extracted from a dry and a wet season SAR image and were compared with 47 in situ soil roughness measurements obtained in the rocky soils of the Walnut Gulch Experimental Watershed, southeastern Arizona, USA. Both the dry and the wet season SAR data showed exponential relationships with root mean square (RMS) height measurements. The dry C-band ERS-1 SAR data were strongly correlated (R² = 0.80), while the wet season SAR data have somewhat higher secondary variation (R² = 0.59). This lower correlation was probably provoked by the stronger influence of soil moisture, which may not be negligible in the wet season SAR data. We concluded that the single configuration C-band SAR data is useful to estimate surface roughness of rocky soils in a semiarid rangeland.
Resumo:
The objective of this work was to determine the sensitivity of maize (Zea mays) genotypes to water deficit, using a simple agrometeorological crop yield model. Crop actual yield and agronomic data of 26 genotypes were obtained from the Maize National Assays carried out in ten locations, in four Brazilian states, from 1998 to 2006. Weather information for each experimental location and period were obtained from the closest weather station. Water deficit sensitivity index (Ky) was determined using the crop yield depletion model. Genotypes can be divided into two groups according to their resistance to water deficit. Normal resistance genotypes had Ky ranging from 0.4 to 0.5 in vegetative period, 1.4 to 1.5 in flowering, 0.3 to 0.6 in fruiting, and 0.1 to 0.3 in maturing period, whereas the higher resistance genotypes had lower values, respectively 0.2-0.4, 0.7-1.2, 0.2-0.4, and 0.1-0.2. The general Ky for the total growing season was 2.15 for sensitive genotypes and 1.56 for the resistant ones. Model performance was acceptable to evaluate crop actual yield, whose average errors estimated for each genotype ranged from -5.7% to +5.8%, and whose general mean absolute error was 960 kg ha-1 (10%).
Resumo:
The objective of this work was to evaluate an estimation system for rice yield in Brazil, based on simple agrometeorological models and on the technological level of production systems. This estimation system incorporates the conceptual basis proposed by Doorenbos & Kassam for potential and attainable yields with empirical adjusts for maximum yield and crop sensitivity to water deficit, considering five categories of rice yield. Rice yield was estimated from 2000/2001 to 2007/2008, and compared to IBGE yield data. Regression analyses between model estimates and data from IBGE surveys resulted in significant coefficients of determination, with less dispersion in the South than in the North and Northeast regions of the country. Index of model efficiency (E1') ranged from 0.01 in the lower yield classes to 0.45 in higher ones, and mean absolute error ranged from 58 to 250 kg ha‑1, respectively.