58 resultados para light-induced change
Light and storage on the germination of spores of Dicksonia sellowiana (Presl.) Hook., Dicksoniaceae
Resumo:
Spores of Dicksonia sellowiana are positively photoblastic and reach the maximum percentage of germination at 23 ± 2°C in white light after seven days of imbibition. The pre-induction phase for spores induced by white or red light for 24 hours was 72 hours. Gametophytes grown in white light were plane and bidimensional, while those grown under red light were filamentous. The higher the number of hours of light applied per day during 10 days, the higher the percentage of germination. Germination was higher for long white light treatments applied on a daily basis. The effect of different light intensities on germination was also investigated here. The lower percentages of germination were observed for spores kept under 43% and 2% of full sunlight, while those kept under 26, 19 and 4% presented higher percentages. Spores presented circa 82% of germination after 731 days of storage under refrigeration at aproximately 10°C.
Resumo:
Lianas are plants that depend on support to reach some appreciable height, and they represent an important structural component of tropical forests. Although they predominate in clearings and gaps, some species survive in the understory. Changes in irradiance between these environments can affect leaf morphology and absorption of photosynthetic active radiation (PAR). We had examined the effects of different light regimes on leaf optical properties, chlorophyll content, specific leaf area, and leaf surface morphology in young seedlings of Canavalia parviflora Benth. (Fabaceae) and Gouania virgata Reissk (Rhamnaceae). The seedlings were distributed on workbenches covered by different layers of neutral shade netting, thus creating three levels of light intensity corresponding to about 40%, 10% and 1.5% of solar irradiance. Plants growing in full sun were used as a control. Both species exhibited an increase in reflectance in full sun and alterations in leaf morphology. Reduction in irradiance induced an increase in absorptance (decrease in reflectance and transmittance) in C. parviflora leaves in the green due to higher chlorophyll content. In G. virgata the spectral leaf changes were less observable. However, the efficiency of absorption was more pronounced in G. virgata than in C. parviflora leaves under 40%, 10% and 1.5% photon flux density (PFD). The greater efficiency of absorption in G. virgata was due to a larger specific leaf area (SLA) under these conditions. The adjustments in leaf optical properties can aid these species in overall carbon gain under limited light conditions.
Resumo:
The role of catecholamines in the distribution of intrarenal blood flow and in single-nephron glomerular filtration rate (SNGFR) was evaluated in anesthetized Wistar rats by the Hanssen technique. Epinephrine (EPI) and norepinephrine (NOR) were infused to produce elevations of 20-30 mmHg in mean arterial pressure. Superficial and juxtamedullary nephron perfusion and filtration were determined by the presence of Prussian blue dye. In the control group, 100% of the nephrons presented a homogeneous pattern of perfusion and filtration. In contrast, a heterogeneous distribution of the dye was found even in the larger arteries (arciform and radial), indicating variable perfusion and filtration in both superficial and juxtamedullary nephrons. The effects of EPI and NOR were also evaluated in the superficial cortex by the micropuncture technique in two additional groups of Munich-Wistar rats. Mean SNGFR was 27% and 54% lower in the EPI- and NOR-treated groups, respectively. No change in mean intraglomerular hydraulic pressure was observed after EPI or NOR infusion in spite of a highly scattered pattern, indicating an important variability in perfusion along the superficial cortex, and/or different sensitivity of the pre- and post-glomerular arterioles. The present data suggest that EPI and NOR may affect intrarenal hemodynamics by modifying perfusion and filtration in both superficial and juxtamedullary glomeruli and not by shifting blood flow from superficial to juxtamedullary nephrons. The heterogeneous pattern of perfusion was a consequence of differential vasoconstriction along the intrarenal arteries, probably due to different density and/or sensitivity of the adrenergic receptor subtypes present in the intrarenal vascular tree.
Resumo:
Autonomic neuropathy is a frequent complication of diabetes associated with higher morbidity and mortality in symptomatic patients, possibly because it affects autonomic regulation of the sinus node, reducing heart rate (HR) variability which predisposes to fatal arrhythmias. We evaluated the time course of arterial pressure and HR and indirectly of autonomic function (by evaluation of mean arterial pressure (MAP) variability) in rats (164.5 ± 1.7 g) 7, 14, 30 and 120 days after streptozotocin (STZ) injection, treated with insulin, using measurements of arterial pressure, HR and MAP variability. HR variability was evaluated by the standard deviation of RR intervals (SDNN) and root mean square of successive difference of RR intervals (RMSSD). MAP variability was evaluated by the standard deviation of the mean of MAP and by 4 indices (P1, P2, P3 and MN) derived from the three-dimensional return map constructed by plotting MAPn x [(MAPn+1) - (MAPn)] x density. The indices represent the maximum concentration of points (P1), the longitudinal axis (P2), and the transversal axis (P3) and MN represents P1 x P2 x P3 x 10-3. STZ induced increased urinary glucose in diabetic (D) rats compared to controls (C). Seven days after STZ, diabetes reduced resting HR from 380.6 ± 12.9 to 319.2 ± 19.8 bpm, increased HR variability, as demonstrated by increased SDNN, from 11.77 ± 1.67 to 19.87 ± 2.60 ms, did not change MAP, and reduced P1 from 61.0 ± 5.3 to 51.5 ± 1.8 arbitrary units (AU), P2 from 41.3 ± 0.3 to 29.0 ± 1.8 AU, and MN from 171.1 ± 30.2 to 77.2 ± 9.6 AU of MAP. These indices, as well as HR and MAP, were similar for D and C animals 14, 30 and 120 days after STZ. Seven-day rats showed a negative correlation of urinary glucose with resting HR (r = -0.76, P = 0.03) as well as with the MN index (r = -0.83, P = 0.01). We conclude that rats with short-term diabetes mellitus induced by STZ presented modified autonomic control of HR and MAP which was reversible. The metabolic control may influence these results, suggesting that insulin treatment and a better metabolic control in this model may modify arterial pressure, HR and MAP variability
Resumo:
Previous data from our laboratory have indicated that nitric oxide (NO) acting at the presynaptic level increases the amplitude of muscular contraction (AMC) of the phrenic-diaphragm preparations isolated from indirectly stimulated rats, but, by acting at the postsynaptic level, it reduces the AMC when the preparations are directly stimulated. In the present study we investigated the effects induced by NO when tetanic frequencies of stimulation were applied to in vivo preparations (sciatic nerve-anterior tibial muscle of the cat). Intra-arterial injection of NO (0.75-1.5 mg/kg) induced a dose-dependent increase in the Wedensky inhibition produced by high frequencies of stimulation applied to the motor nerve. Intra-arterial administration of 7.2 µg/kg methylene blue did not produce any change in AMC at low frequencies of nerve stimulation (0.2 Hz), but antagonized the NO-induced Wedensky inhibition. The experimental data suggest that NO-induced Wedensky inhibition may be mediated by the guanylate cyclase-cGMP pathway
Resumo:
In the course of studies on the effects of septal area lesions on neuroimmunomodulation and Walker 256 tumor development, it was observed that tumor-induced sodium and water retention was less marked in lesioned than in non-lesioned rats. In the present study possible mechanisms involved in this phenomenon were investigated. The experiments were performed in septal-lesioned (LW; N = 15) and sham-operated (SW; N = 7) 8-week-old male Wistar rats, which received multifocal simultaneous subcutaneous (sc) inoculations of Walker 256 tumor cells about 30 days after the stereotaxic surgery. Control groups (no tumor, sham-operated food-restricted (SFR), N = 7) and lesioned food-restricted (LFR, N = 10) were subjected to a feeding pattern similar to that observed in tumor-bearing animals. Multifocal inoculation of Walker 256 tumor rapidly induces anorexia, which is paradoxically accompanied by an increase in body weight, as a result of renal Na+ and fluid retention. These effects of the tumor were also seen in LW rats, although the rise in fractional sodium balance during the early clinical period was significantly smaller than in SW rats (day 4: SW = 47.6 ± 6.4% and LW = 13.8 ± 5.2%; day 5: SW = 57.5 ± 3.5% and LW = 25.7 ± 4.8%; day 6: SW = 54.4 ± 3.8% and LW = 32.1 ± 4.4%; P<0.05), suggesting a temporary reduction in tumor-induced sodium retention. In contrast, urine output was significantly reduced in SW rats and increased in LW rats (LW up to -0.85 and SW up to 4.5 ml/100 g body weight), with no change in osmolar excretion. These temporary changes in the tumor's effects on LW rats may reflect a "reversal" of the secondary central antidiuretic response induced by the tumor (from antidiuretic to diuretic).
Resumo:
The effects of the benzodiazepine1 (BZ1) receptor agonist SX-3228 were studied in rats (N = 12) implanted for chronic sleep procedures. Administration of 0.5, 1.0 and 2.5 mg/kg SX-3228, sc, to rats 1 h after the beginning of the light phase of the light-dark cycle induced a significant reduction of rapid-eye-movement sleep (REMS) during the third recording hour. Moreover, slow wave sleep (SWS) was increased during the fourth recording hour after the two largest doses of the compound. Administration of 0.5, 1.0 and 2.5 mg/kg SX-3228 one hour after the beginning of the dark period of the light-dark cycle caused a significant and maintained (6-h recording period) reduction of waking (W), whereas SWS and light sleep (LS) were increased. REMS values tended to increase during the entire recording period; however, the increase was statistically significant only for the 1.0 mg/kg dose during the first recording hour. In addition, a significant and dose-related increase of power density in the delta and the theta regions was found during nonREM sleep (LS and SWS) in the dark period. Our results indicate that SX-3228 is a potent hypnotic when given to the rat during the dark period of the light-dark cycle. Moreover, the sleep induced by SX-3228 during the dark phase closely resembles the physiological sleep of the rat.
Resumo:
In the present study, we analyzed DNA damage induced by phycocyanin (PHY) in the presence of visible light (VL) using a set of repair endonucleases purified from Escherichia coli. We demonstrated that the profile of DNA damage induced by PHY is clearly different from that induced by molecules that exert deleterious effects on DNA involving solely singlet oxygen as reactive species. Most of PHY-induced lesions are single strand breaks and, to a lesser extent, base oxidized sites, which are recognized by Nth, Nfo and Fpg enzymes. High pressure liquid chromatography coupled to electrochemical detection revealed that PHY photosensitization did not induce 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo) at detectable levels. DNA repair after PHY photosensitization was also investigated. Plasmid DNA damaged by PHY photosensitization was used to transform a series of Saccharomyces cerevisiae DNA repair mutants. The results revealed that plasmid survival was greatly reduced in rad14 mutants, while the ogg1 mutation did not modify the plasmid survival when compared to that in the wild type. Furthermore, plasmid survival in the ogg1 rad14 double mutant was not different from that in the rad14 single mutant. The results reported here indicate that lethal lesions induced by PHY plus VL are repaired differently by prokaryotic and eukaryotic cells. Morever, nucleotide excision repair seems to play a major role in the recognition and repair of these lesions in Saccharomyces cerevisiae.
Resumo:
Although it has been demonstrated that nitric oxide (NO) released from sodium nitrite induces tetanic fade in the cat neuromuscular preparations, the effect of L-arginine on tetanic fade and its origin induced by NO have not been studied in these preparations. Furthermore, atropine reduces tetanic fade induced by several cholinergic and anticholinergic drugs in these preparations, whose mechanism is suggested to be mediated by the interaction of acetylcholine with inhibitory presynaptic muscarinic receptors. The present study was conducted in cats to determine the effects of L-arginine alone or after pretreatment with atropine or 1H-[1,2,4]oxadiazole [4,3-a]quinoxalin-1-one (ODQ) on neuromuscular preparations indirectly stimulated at high frequency. Drugs were injected into the middle genicular artery. L-arginine (2 mg/kg) and S-nitroso-N-acetylpenicillamine (SNAP; 16 µg/kg) induced tetanic fade. The Nw-nitro-L-arginine (L-NOARG; 2 mg/kg) alone did not produce any effect, but reduced the tetanic fade induced by L-arginine. D-arginine (2 mg/kg) did not induce changes in tetanic fade. The tetanic fade induced by L-arginine or SNAP was reduced by previous injection of atropine (1.0 µg/kg) or ODQ (15 µg/kg). ODQ alone did not change tetanic fade. The data suggest that the NO-synthase-GC pathway participates in the L-arginine-induced tetanic fade in cat neuromuscular preparations. The tetanic fade induced by L-arginine probably depends on the action of NO at the presynaptic level. NO may stimulate guanylate cyclase increasing acetylcholine release and thereby stimulating presynaptic muscarinic receptors.
Resumo:
Hypoxia elicits hyperventilation and hypothermia, but the mechanisms involved are not well understood. The nitric oxide (NO) pathway is involved in hypoxia-induced hypothermia and hyperventilation, and works as a neuromodulator in the central nervous system, including the locus coeruleus (LC), which is a noradrenergic nucleus in the pons. The LC plays a role in a number of stress-induced responses, but its participation in the control of breathing and thermoregulation is unclear. Thus, in the present study, we tested the hypothesis that LC plays a role in the hypoxia-induced hypothermia and hyperventilation, and that NO is involved in these responses. Electrolytic lesions were performed bilaterally within the LC in awake unrestrained adult male Wistar rats weighing 250-350 g. Body temperature and pulmonary ventilation (VE) were measured. The rats were divided into 3 groups: control (N = 16), sham operated (N = 7) and LC lesioned (N = 19), and each group received a saline or an NG-nitro-L-arginine methyl ester (L-NAME, 250 µg/µl) intracerebroventricular (icv) injection. No significant difference was observed between control and sham-operated rats. Hypoxia (7% inspired O2) caused hyperventilation and hypothermia in both control (from 541.62 ± 35.02 to 1816.18 ± 170.7 and 36.3 ± 0.12 to 34.4 ± 0.09, respectively) and LC-lesioned rats (LCLR) (from 694.65 ± 63.17 to 2670.29 ± 471.33 and 36 ± 0.12 to 35.3 ± 0.12, respectively), but the increase in VE was higher (P<0.05) and hypothermia was reduced (P<0.05) in LCLR. L-NAME caused no significant change in VE or in body temperature under normoxia, but abolished both the hypoxia-induced hyperventilation and hypothermia. Hypoxia-induced hyperventilation was reduced in LCLR treated with L-NAME. L-NAME also abolished the hypoxia-induced hypothermia in LCLR. The present data indicate that hypoxia-induced hyperventilation and hypothermia may be related to the LC, and that NO is involved in these responses.
Resumo:
In the present investigation we studied some behavioral and immunological parameters of adult gastropod mollusk, Biomphalaria tenagophila, which have been reproducing for several generations under laboratory conditions. One group of gastropods was kept on a 14-h light/10-h dark cycle, corresponding to a regular circadian cycle, and another group was exposed to continuous light for 48 h. Animals were studied along (behavioral groups) or immediately after (immunological groups) 48 h of regular circadian cycle or continuous light conditions. Stopping/floating, dragging and sliding were the behavioral aspects considered (N = 20 for regular cycle; N = 20 for continuous illumination) and number of hemocytes/µl hemolymph was the immunological parameter studied (N = 15 for regular cycle, N = 14 for continuous illumination). Animals under continuous illumination were more active (sliding = 33 episodes, dragging = 48 episodes) and displayed a lower number of hemocytes (78.0 ± 24.27/µl) when compared with mollusks kept on a regular circadian cycle (sliding = 18 episodes, dragging = 27 episodes; hemocytes = 157.6 ± 53.27/µl). The data are discussed in terms of neural circuits and neuroimmunological relations with the possible stressful effect of continuous illumination.
Resumo:
Several lines of evidence point to the participation of serotonin (5HT) in anxiety. Its specific role, however, remains obscure. The objective of the present study was to evaluate the effect of reducing 5HT-neurotransmission through an acute tryptophan depletion on anxiety induced by a simulated public speaking (SPS) test. Two groups of 14-15 subjects were submitted to a 24-h diet with a low or normal content of tryptophan and received an amino acid mixture without (TRY-) or with (TRY+) tryptophan under double-blind conditions. Five hours later they were submitted to the SPS test. The state-trait anxiety inventory (STAI) and the visual analogue mood scale (VAMS) were used to measure subjective anxiety. Both scales showed that SPS induced a significant increase in anxiety. Although no overall difference between groups was found, there was a trend (P = 0.078) to an interaction of group x gender x phases of the SPS, and a separate analysis of each gender showed an increase in anxiety measured by the STAI in females of the TRY- group. The results for the female TRY- group also suggested a greater arousing effect of the SPS test. In conclusion, the tryptophan depletion procedure employed in the present study did not induce a significant general change in subjective anxiety, but tended to induce anxiety in females. This suggests a greater sensitivity of the 5HT system to the effects of the procedure in this gender.
Resumo:
In order to investigate whether prolonged stress interferes with the onset of sexual behavior at puberty and with fertility at adulthood, prepubertal male Wistar rats (40 days of age) were immobilized 6 h a day for 15 days (up to early puberty) or for 60 days (until sexual maturity). Pubertal stressed rats showed a two-fold increase in the latency for the first mount (probably due to repeated aversive experience in which a change of environment was always followed by immobilization) and a 2.5-fold increase in the frequency of thrusting (indicative of enhanced sexual performance). The apparently stimulatory effect of prolonged stress on the onset of sexual behavior is discussed in terms of increased testosterone level and interference with the complex interchanges between the neurotransmitters/neuropeptides involved in the central control of male sexual activity. Adult stressed animals were mated with normal females, which became pregnant but exhibited a more than two-fold increase in both pre-implantation and post-implantation loss, probably due to a smaller rate of fertilization and/or fertilization with damaged spermatozoa.
Resumo:
The present study aimed to test the effects of blue, green or white light on the stress response of the Nile tilapia, Oreochromis niloticus (L.). Each color was tested on two groups of isolated adult Nile tilapia (8 replicates each): one being subjected to confinement stress, and the other not (control). A different environmental color was imposed on each compartment by covering the light source with cellophane of the respective color (green or blue; no cellophane was used for white light). The intensity of green, white and blue lights was 250, 590 and 250 lux, respectively. Basal plasma cortisol levels were determined for each fish prior to the experimental procedures. The fish were confined by being displaced toward one side of the aquarium using an opaque partition for 1 h both in the morning and the afternoon of the two consecutive days of the test. At the end of this 48-h period, plasma cortisol levels were measured again. Basal cortisol levels (ng/ml) were similar for each group (ANOVA, F(2;42) = 0.77, P = 0.47). Thus, plasma cortisol levels were analyzed in terms of variation from their respective basal level. After confinement, plasma cortisol levels were not increased in fish submitted to a blue light environment. Thus, blue light prevents the confinement-induced cortisol response, an effect not necessarily related to light intensity.
Resumo:
Peripheral nerve ultrastructure was assessed after single or multiple local injections of the intercalating dye ethidium bromide. Thirty-four adult Wistar rats of both sexes were divided into five groups and maintained in a controlled environment with rat chow and water ad libitum throughout the experiment. The experimental animals were injected with 1 µl of 0.1% ethidium bromide in 0.9% saline into the central third of the left sciatic nerve 1 (group 1), 2 (group 2), 4 (group 3), 6 (group 4) or 8 (group 5) times. In groups 2 to 5 the injections were made at 28-day intervals. Control animals received the same amount of 0.9% saline. The animals were killed at different times after injection: group 1 at 7 days (2 rats) and 15 days (2 rats); for groups 2, 3, 4 and 5, all rats were killed 10 days after the last injection and the lesions were investigated by light and transmission electron microscopy. In the acute lesions, intoxicated Schwann cells showed a vacuolated cytoplasm and separation of the sheaths from the axon. Myelin sheaths underwent progressive vesiculation and subsequent segmental demyelination. Myelin debris were withdrawn by macrophages and remyelination by Schwann cells was prominent. With the increase in the number of injections collagen fibers also increased in number and progressively enveloped smaller numbers of remyelinated axons composing new fascicles. Wallerian degeneration of fibers apparently not affected by ethidium bromide was more intense in the nerves from groups 4 and 5. The peripheral nerve repairs itself after demyelinating challenges with a profusion of collagen fibers and new fasciculations. This experimental model is valid to mimic recurrent demyelinating neuropathies.