229 resultados para kDNA-PCR
Resumo:
Foi realizado diagnóstico para leishmaniose tegumentar americana a partir de sangue de pacientes residentes em dois municípios endêmicos do estado de Pernambuco. O DNA de 119 amostras de sangue foi extraído e submetido a reação em cadeia da polimerase. Utilizaram-se primers do minicírculo do DNA do cinetoplasto (kDNA) de Leishmania braziliensis, circulante em Pernambuco, cuja seqüência-alvo gera um fragmento de 750 pares de bases. No total 58 (48,7%) indivíduos apresentaram amplificação positiva e 61 (51,3%) negativa. Das amostras positivas para a PCR, 37 (≅ 64%) pertenciam a indivíduos tratados e sem lesão. Conclui-se que a técnica de PCR é eficaz para identificar o DNA de leishmânia em material de biópsias e em sangue venoso.
Resumo:
Data concerning HCV infection in Central Brazil are rare. Upon testing 2,350 voluntary blood donors from this region, we found anti-HCV prevalence rates of 2.2% by a second generation ELISA and 1.4% after confirmation by a line immunoassay. Antibodies against core, NS4, and NS5 antigens of HCV were detected in 81.8%, 72.7%, and 57.5%, respectively, of the positive samples in the line immunoassay. HCV viremia was present in 76.6% of the anti-HCV-positive blood donors. A relation was observed between PCR positivity and serum reactivity in recognizing different HCV antigens in the line immunoassay. The majority of the positive donors had history of previous parenteral exposure. While the combination of ALT>50 IU/l and anti-HBc positivity do not appear to be good surrogate markers for HCV infection, the use of both ALT anti-HCV tests is indicated in the screening of Brazilian blood donors.
Resumo:
Supernatant of boiled spleen saline-suspensions of Yersinia pestis experimentally infected animals were used as template for PCR amplification without DNA extraction. PCR sensitivity was enhanced by a second round of amplification (Nested). No amplification was observed from non-infected animals.
Resumo:
We show here a simplified RT-PCR for identification of dengue virus types 1 and 2. Five dengue virus strains, isolated from Brazilian patients, and yellow fever vaccine 17DD as a negative control, were used in this study. C6/36 cells were infected and supernatants were collected after 7 days. The RT-PCR, done in a single reaction vessel, was carried out following a 1/10 dilution of virus in distilled water or in a detergent mixture containing Nonidet P40. The 50 µl assay reaction mixture included 50 pmol of specific primers amplifying a 482 base pair sequence for dengue type 1 and 210 base pair sequence for dengue type 2. In other assays, we used dengue virus consensus primers having maximum sequence similarity to the four serotypes, amplifying a 511 base pair sequence. The reaction mixture also contained 0.1 mM of the four deoxynucleoside triphosphates, 7.5 U of reverse transcriptase, 1U of thermostable Taq DNA polymerase. The mixture was incubated for 5 minutes at 37ºC for reverse transcription followed by 30 cycles of two-step PCR amplification (92ºC for 60 seconds, 53ºC for 60 seconds) with slow temperature increment. The PCR products were subjected to 1.7% agarose gel electrophoresis and visualized by UV light after staining with ethidium bromide solution. Low virus titer around 10 3, 6 TCID50/ml was detected by RT-PCR for dengue type 1. Specific DNA amplification was observed with all the Brazilian dengue strains by using dengue virus consensus primers. As compared to other RT-PCRs, this assay is less laborious, done in a shorter time, and has reduced risk of contamination
Resumo:
We present a case of prenatal diagnosis of congenital rubella. After birth, in addition to traditional serologic and clinical examinations to confirm the infection, we could identify the virus in the "first fluid aspirated from the oropharynx of the newborn", using polimerase chain reaction (PCR). We propose that this first oropharynx fluid (collected routinely immediately after birth) could be used as a source for identification of various congenital infection agents, which may not always be easily identified by current methods
Resumo:
Herpetic infections are common complications in AIDS patients. The clinical features could be uncommon and antiviral chemotherapy is imperative. A rapid diagnosis could prevent incorrect approaches and treatment. The polymerase chain reaction is a rapid, specific and sensible method for DNA amplification and diagnosis of infectious diseases, especially viral diseases. This approach has some advantages compared with conventional diagnostic procedures. Recently we have reported a new PCR protocol to rapid diagnosis of herpetic infections with suppression of the DNA extraction step. In this paper we present a case of herpetic whitlow with rapid diagnosis by HSV-1 specific polymerase chain reaction using the referred protocol.
Resumo:
We report an adaptation of a technique for the blood sample collection (GFM) as well as for the extraction and amplification of Plasmodium DNA for the diagnosis of malaria infection by the PCR/ELISA. The method of blood sample collection requires less expertise and saves both time and money, thus reducing the cost by more than half. The material is also suitable for genetic analysis in either fresh or stored specimens prepared by this method.
Resumo:
We have developed a procedure for the rapid diagnosis of plague that also allows the identification of prominent virulence markers of Y. pestis strains. This procedure is based upon the use of a single polymerase chain reaction with multiple pairs of primers directed at genes present in the three virulence plasmids as well as in the chromosomal pathogenicity island of the bacterium. The technique allowed the discrimination of strains which lacked one or more of the known pathogenic loci, using as template total DNA obtained from bacterial cultures and from simulated blood cultures containing diluted concentration of bacteria. It also proved effective in confirming the disease in a blood culture from a plague suspected patient. As the results are obtained in a few hours this technique will be useful in the methodology of the Plague Control Program.
Resumo:
The precise microenvironment of Paracoccidioides brasiliensis has not yet been discovered perhaps because the methods used are not sensitive enough. We applied to this purpose the polymerase chain reaction (PCR) using three sets of specific primers corresponding to two P. brasiliensis genes. This fungus as well as several other fungi, were grown and their DNA obtained by mechanical disruption and a phenol chloroform isoamylalcohol-based purification method. The DNA served for a PCR reaction that employed specific primers from two P. brasiliensis genes that codify for antigenic proteins, namely, the 27 kDa and the 43 kDa. The lowest detection range for the 27 kDa gene was 3 pg. The amplification for both genes was positive only with DNA from P. brasiliensis; additionally, the mRNA for the 27 kDa gene was present only in P. brasiliensis, as indicated by the Northern analysis. The standardization of PCR technology permitted the amplification of P. brasiliensis DNA in artificially contaminated soils and in tissues of armadillos naturally infected with the fungus. These results indicate that PCR technology could play an important role in the search for P. brasiliensis habitat and could also be used in other ecological studies.
Resumo:
Cytomegalovirus (CMV) infection is the most common congenital infection, affecting 0.4% to 2.3% newborns. Most of them are asymptomatic at birth, but later 10% develop handicaps, mainly neurological disturbances. Our aim was to determine the prevalence of CMV shed in urine of newborns from a neonatal intensive care unit using the polymerase chain reaction (PCR) and correlate positive cases to some perinatal aspects. Urine samples obtained at first week of life were processed according to a PCR protocol. Perinatal data were collected retrospectively from medical records. Twenty of the 292 cases (6.8%) were CMV-DNA positive. There was no statistical difference between newborns with and without CMV congenital infection concerning birth weight (p=0.11), gestational age (p=0.11), Apgar scores in the first and fifth minutes of life (p=0.99 and 0.16), mother's age (p=0.67) and gestational history. Moreover, CMV congenital infection was neither related to gender (p=0.55) nor to low weight (<2,500g) at birth (p=0.13). This high prevalence of CMV congenital infection (6.8%) could be due to the high sensitivity of PCR technique, the low socioeconomic level of studied population or the severe clinical status of these newborns.
Resumo:
Differences were detected in the gene expression of strains of E. histolytica using RNA (RAP-PCR) and DNA fingerprinting (RAPD). Analysis of the electrophoretic profiles of the gels revealed some polymorphic markers that could be used in the individual characterization of the strains. The 260 bands generated by using five different primers for RAP-PCR, as well as RAPD, were employed in the construction of dendograms. The dendogram obtained based on the RAPD products permitted the distinction of symptomatic and asymptomatic isolates, as well the correlation between the polymorphism exhibited and the virulence of the strains. The dendogram obtained for the RAP-PCR products did not show a correlation with the virulence of the strains but revealed a high degree of intraspecific transcriptional variability that could be related to other biological features, whether or not these are involved in the pathogenesis of amebiasis.
Resumo:
More than 70 species of mycobacteria have been defined, and some can cause disease in humans, especially in immunocompromised patients. Species identification in most clinical laboratories is based on phenotypic characteristics and biochemical tests and final results are obtained only after two to four weeks. Quick identification methods, by reducing time for diagnosis, could expedite institution of specific treatment, increasing chances of success. PCR restriction-enzyme analysis (PRA) of the hsp65 gene was used as a rapid method for identification of 103 clinical isolates. Band patterns were interpreted by comparison with published tables and patterns available at an Internet site (http://www.hospvd.ch:8005). Concordant results of PRA and biochemical identification were obtained in 76 out of 83 isolates (91.5%). Results from 20 isolates could not be compared due to inconclusive PRA or biochemical identification. The results of this work showed that PRA could improve identification of mycobacteria in a routine setting because it is accurate, fast, and cheaper than conventional phenotypic identification.
Resumo:
The aim of this study was to develop a polymerase chain reaction (PCR) protocol for the detection of Salmonella in artificially contaminated chicken meat. Tests were performed with different dilutions of Salmonella Typhimurium or Salmonella Enteritidis cells (10-7, 10-8 or 10-9 CFU/mL) inoculated in chicken meat samples, in order to establish the limits of detection, incubation times (0, 6, 8 and 24 hours of pre-enrichment in PBW 1%) and three DNA extraction protocols (phenol-chloroform, thermal treatment and thermal treatment and Sephaglass). The assay was able to detect until 10-9 CFU/mL of initial dilution of Salmonella cells inoculated in chicken meat, which allows detection of Salmonella within 48 hours, including 24 hours of pre-enrichment and using the phenol-chloroform DNA extraction protocol. As the results are obtained in a shorter time period than that of microbiological culture, this procedure will be useful in the methodology for detection of Salmonella in chicken.
Resumo:
Trypanosoma cruzi (Schyzotrypanum, Chagas, 1909), and Chagas disease are endemic in captive-reared baboons at the Southwest Foundation for Biomedical Research, San Antonio, Texas. We obtained PCR amplification products from DNA extracted from sucking lice collected from the hair and skin of T. cruzi-infected baboons, with specific nested sets of primers for the protozoan kinetoplast DNA, and nuclear DNA. These products were hybridized to their complementary internal sequences. Selected sequences were cloned and sequencing established the presence of T. cruzi nuclear DNA, and minicircle kDNA. Competitive PCR with a kDNA set of primers determined the quantity of approximately 23.9 ± 18.2 T. cruzi per louse. This finding suggests that the louse may be a vector incidentally contributing to the dissemination of T. cruzi infection in the baboon colony.