25 resultados para itness gain curves
Resumo:
The authors performed a study of bone mass in eutrophic Brazilian children and adolescents using dual-energy X-ray absorptiometry (DXA) in order to obtain curves for bone mineral content (BMC) and bone mineral density (BMD) by chronological age and correlate these values with weight and height. Healthy Caucasian children and adolescents, 120 boys and 135 girls, 6 to 14 years of age, residents of São Paulo, Brazil, were selected from the Pediatric Department outpatient clinic of Hospital São Paulo (Universidade Federal de São Paulo). BMC, BMD and the area of the vertebral body of the L2-L4 segment were obtained by DXA. BMC and BMD for the lumbar spine (L2-L4) presented a progressive increase between 6 and 14 years of age in both sexes, with a distribution that fitted an exponential curve. We identified an increase of mineral content in female patients older than 11 years which was maintained until 13 years of age, when a new decrease in the velocity of bone mineralization occurred. Male patients presented a period of accelerated bone mass gain after 11 years of age that was maintained until 14 years of age. At 14 years of age the mean BMD values for boys and girls were 0.984 and 1.017 g/cm², respectively. A stepwise multiple regression analysis of paired variables showed that the "vertebral area-age" pair was the most significant in the determination of BMD values and the introduction of a third variable (weight or height) did not significantly increase the correlation coefficient.
Resumo:
A longitudinal and prospective study was carried out at two state-operated maternity hospitals in Belo Horizonte during 1996 in order to assess the weight of preterm appropriate-for-gestational-age newborns during the first twelve weeks of life. Two hundred and sixty appropriate-for-gestational-age preterm infants with birth weight <2500 g were evaluated weekly. The infants were divided into groups based on birth weight at 250-g intervals. Using weight means, somatic growth curves were constructed and adjusted to Count's model. Absolute (g/day) and relative (g kg-1 day-1) velocity curves were obtained from a derivative of this model. The growth curve was characterized by weight loss during the 1st week (4-6 days) ranging from 5.9 to 13.3% (the greater the percentage, the lower the birth weight), recovery of birth weight within 17 and 21 days, and increasingly higher rates of weight gain after the 3rd week. These rates were proportional to birth weight when expressed as g/day (the lowest and the highest birth weight neonates gained 15.9 and 30.1 g/day, respectively). However, if expressed as g kg-1 day-1, the rates were inversely proportional to birth weight (during the 3rd week, the lowest and the highest weight newborns gained 18.0 and 11.5 g kg-1 day-1, respectively). During the 12th week the rates were similar for all groups (7.5 to 10.2 g kg-1 day-1). The relative velocity accurately reflects weight gain of preterm infants who are appropriate for gestational age and, in the present study, it was inversely proportional to birth weight, with a peak during the 3rd week of life, and a homogeneous behavior during the 12th week for all weight groups.
Resumo:
Short stature, a marker for undernutrition early in life, has been associated with obesity in Brazilian women, but not in men. We tested the hypothesis that weight gain during the reproductive years could explain this gender difference. A national two-stage household survey of mothers with one or more children under five years of age was conducted in Brazil in 1996. The subjects were women aged 20 to 45 years (N = 2297), with last delivery seven months or more prior to the interview. The regions of the country were divided into rural, North/Northeast (urban underdeveloped) and South/Southeast/Midwest (urban developed). The dependent variables were current body mass index (BMI) measured, BMI prior to childbearing (reported), and BMI change. Socioeconomic variables included mother's years of education and family purchasing power score. A secondary analysis was restricted to primiparous women. The prevalence of current overweight and overweight prior to childbearing (BMI > or = 25 kg/m²) was higher among shorter women (<1.50 m) compared to normal stature women only in the urban developed region (P < 0.05). After adjustment for socioeconomic variables, age, parity, BMI prior to childbearing, and age at first birth, current BMI was 2.39 units higher (P = 0.008) for short stature women living in the urban developed area compared with short stature women living in the urban underdeveloped area. For both multiparous and primiparous women, BMI gain compared to the value prior to childbearing was significantly higher among short stature women living in the urban developed region (P <= 0.04). These results provide clear evidence that short stature was associated with a higher BMI and with an increased risk of weight gain/retention with pregnancy in the developed areas of Brazil, but not in the underdeveloped ones.
Resumo:
Our hypothesis is that iron accumulated in tissue, rather than in serum, may compromise cardiovascular control. Male Fischer 344 rats weighing 180 to 220 g were divided into 2 groups. In the serum iron overload group (SIO, N = 12), 20 mg elemental iron was injected ip daily for 7 days. In the tissue iron overload group (TIO, N = 19), a smaller amount of elemental iron was injected (10 mg, daily) for 5 days followed by a resting period of 7 days. Reflex heart rate responses were elicited by iv injections of either phenylephrine (0.5 to 5.0 µg/kg) or sodium nitroprusside (1.0 to 10.0 µg/kg). Baroreflex curves were determined and fitted to sigmoidal equations and the baroreflex gain coefficient was evaluated. To evaluate the role of other than a direct effect of iron on tissue, acute treatment with the iron chelator deferoxamine (20 mg/kg, iv) was performed on the TIO group and the baroreflex was re-evaluated. At the end of the experiments, evaluation of iron levels in serum confirmed a pronounced overload for the SIO group (30-fold), in contrast to the TIO group (2-fold). Tissue levels of iron, however, were higher in the TIO group. The SIO protocol did not produce significant alterations in the baroreflex curve response, while the TIO protocol produced a nearly 2-fold increase in baroreflex gain (-4.34 ± 0.74 and -7.93 ± 1.08 bpm/mmHg, respectively). The TIO protocol animals treated with deferoxamine returned to sham levels of baroreflex gain (-3.7 ± 0.3 sham vs -3.6 ± 0.2 bpm/mmHg) 30 min after the injection. Our results indicate an effect of tissue iron overload on the enhancement of baroreflex sensitivity.
Resumo:
Because it is not known where in the reflex arch, i.e., afference, central nervous system or efferences, hyperglycemia affects baroreflex function, the present study examined the effect of short-term (30 min) hyperglycemia on aortic depressor nerve function measured by a mean arterial pressure vs aortic depressor nerve activity curve, fitted by sigmoidal regression, or by cross-spectral analysis between mean arterial pressure and aortic depressor nerve activity. Anesthetized male Wistar rats received an intravenous bolus (0.25 mL) injection, followed by 30 min of infusion (1 mL/h) of 30% glucose (N = 14). Control groups received a bolus injection and infusion of 0.9% saline (N = 14), or 30% mannitol (N = 14). Glucose significantly increased both blood glucose and plasma osmolarity (P < 0.05). Mean arterial pressure did not change after glucose, saline or mannitol infusion. Mean arterial pressure vs nerve activity curves were identical before and 10 and 30 min after the beginning of glucose, saline or mannitol infusion. Slow (0.3 Hz) oscillations of arterial pressure were induced by controlled bleeding, and cross-spectral analysis was applied to arterial pressure and aortic nerve activity. Transfer function magnitude (aortic depressor nerve activity/mean arterial pressure ratio in the frequency domain) was calculated as an index of gain of the aortic depressor nerve. Transfer function magnitude was similar in all groups during induced or spontaneous oscillations of arterial pressure. In conclusion, the present study demonstrates, by means of two different approaches for assessing baroreceptor function, that aortic depressor nerve activity was not altered by short-term (30 min) hyperglycemia.
Resumo:
This study evaluated the effects of chronic treadmill training on body mass gain and visceral fat accumulation in overfed rats. Overfeeding was induced by reducing the litter size to 3 male pups per mother during the suckling period. The litter size of control rats was adjusted to 10 male pups per mother. Seven weeks after birth overfed and normally fed rats were selected and assigned to a sedentary protocol or to a low-intensity treadmill training protocol (60 min, 5 times/week, for 9 weeks). Four groups (overfed sedentary, N = 23; normally fed sedentary, N = 32; overfed exercised, N = 18, and normally fed exercised, N = 18) were evaluated at 18 weeks. Data are reported as means ± SEM. Initial body weight was similar in control and overfed rats [8.0 ± 0.2 g (N = 42) vs 8.0 ± 0.1 g (N = 50); P > 0.05] and body weight gain during the suckling period was higher in the overfed rats (30.6 ± 0.9 vs 23.1 ± 0.3 g; P < 0.05). Exercise attenuated the body weight gain of overfed compared to sedentary rats (505 ± 14 vs 537 ± 12 g; P < 0.05). The sedentary overfed rats showed higher visceral fat weight compared to normally fed animals (31.22 ± 2.08 vs 21.94 ± 1.76 g; P < 0.05). Exercise reduced visceral fat by 36.5% in normally fed rats and by 35.7% in overfed rats. Exercise attenuated obesity in overfed rats and induced an important reduction of visceral fat.
Resumo:
The objective was to elucidate the relationships between serum concentrations of the gut hormone peptide YY (PYY) and ghrelin and growth development in infants for potential application to the clinical observation index. Serum concentrations of PYY and ghrelin were measured using radioimmunoassay from samples collected at the clinic. For each patient, gestational age, birth weight, time required to return to birth weight, rate of weight gain, time required to achieve recommended daily intake (RDI) standards, time required for full-gastric feeding, duration of hospitalization, and time of administration of total parenteral nutrition were recorded. Serum PYY and ghrelin concentrations were significantly higher in the preterm group (N = 20) than in the full-term group (N = 20; P < 0.01). Within the preterm infant group, the serum concentrations of PYY and ghrelin on postnatal day (PND) 7 (ghrelin = 1485.38 ± 409.24; PYY = 812.37 ± 153.77 ng/L) were significantly higher than on PND 1 (ghrelin = 956.85 ± 223.09; PYY = 545.27 ± 204.51 ng/L) or PND 3 (ghrelin = 1108.44 ± 351.36; PYY = 628.96 ± 235.63 ng/L; P < 0.01). Both serum PYY and ghrelin concentrations were negatively correlated with body weight, and the degree of correlation varied with age. Serum ghrelin concentration correlated negatively with birth weight and positively with the time required to achieve RDI (P < 0.05). In conclusion, serum PYY and ghrelin concentrations reflect a negative energy balance, predict postnatal growth, and enable compensation. Further studies are required to elucidate the precise concentration and roles of PYY and ghrelin in newborns and to determine the usefulness of measuring these hormones in clinical practice.
Resumo:
The relationship of body weight (BW) with white adipose tissue (WAT) mass and WAT gene expression pattern was investigated in mice submitted to physical training (PT). Adult male C57BL/6 mice were submitted to two 1.5-h daily swimming sessions (T, N = 18), 5 days/week for 4 weeks or maintained sedentary (S, N = 15). Citrate synthase activity increased significantly in the T group (P < 0.05). S mice had a substantial weight gain compared to T mice (4.06 ± 0.43 vs 0.38 ± 0.28 g, P < 0.01). WAT mass, adipocyte size, and the weights of gastrocnemius and soleus muscles, lung, kidney, and adrenal gland were not different. Liver and heart were larger and the spleen was smaller in T compared to S mice (P < 0.05). Food intake was higher in T than S mice (4.7 ± 0.2 vs 4.0 ± 0.3 g/animal, P < 0.05) but oxygen consumption at rest did not differ between groups. T animals showed higher serum leptin concentration compared to S animals (6.37 ± 0.5 vs 3.11 ± 0.12 ng/mL). WAT gene expression pattern obtained by transcription factor adipocyte determination and differentiation-dependent factor 1, fatty acid synthase, malic enzyme, hormone-sensitive lipase, adipocyte lipid binding protein, leptin, and adiponectin did not differ significantly between groups. Collectively, our results showed that PT prevents BW gain and maintains WAT mass due to an increase in food intake and unchanged resting metabolic rate. These responses are closely related to unchanged WAT gene expression patterns.
Resumo:
Our objective was to examine associations of adult weight gain and nonalcoholic fatty liver disease (NAFLD). Cross-sectional interview data from 844 residents in Wan Song Community from October 2009 to April 2010 were analyzed in multivariate logistic regression models to examine odds ratios (OR) and 95% confidence intervals (CI) between NAFLD and weight change from age 20. Questionnaires, physical examinations, laboratory examinations, and ultrasonographic examination of the liver were carried out. Maximum rate of weight gain, body mass index, waist circumference, waist-to-hip ratio, systolic blood pressure, diastolic blood pressure, fasting blood glucose, cholesterol, triglycerides, uric acid, and alanine transaminase were higher in the NAFLD group than in the control group. HDL-C in the NAFLD group was lower than in the control group. As weight gain increased (measured as the difference between current weight and weight at age 20 years), the OR of NAFLD increased in multivariate models. NAFLD OR rose with increasing weight gain as follows: OR (95%CI) for NAFLD associated with weight gain of 20+ kg compared to stable weight (change <5 kg) was 4.23 (2.49-7.09). Significantly increased NAFLD OR were observed even for weight gains of 5-9.9 kg. For the “age 20 to highest lifetime weight” metric, the OR of NAFLD also increased as weight gain increased. For the “age 20 to highest lifetime weight” metric and the “age 20 to current weight” metric, insulin resistance index (HOMA-IR) increased as weight gain increased (P<0.001). In a stepwise multivariate regression analysis, significant association was observed between adult weight gain and NAFLD (OR=1.027, 95%CI=1.002-1.055, P=0.025). We conclude that adult weight gain is strongly associated with NAFLD.
Resumo:
As it is a common observation that obesity tends to occur after discontinuation of exercise, we investigated how white adipocytes isolated from the periepididymal fat of animals with interrupted physical training transport and oxidize glucose, and whether these adaptations support the weight regain seen after 4 weeks of physical detraining. Male Wistar rats (45 days old, weighing 200 g) were divided into two groups (n=10): group D (detrained), trained for 8 weeks and detrained for 4 weeks; and group S (sedentary). The physical exercise was carried out on a treadmill for 60 min/day, 5 days/week for 8 weeks, at 50-60% of the maximum running capacity. After the training protocol, adipocytes isolated from the periepididymal adipose tissue were submitted to glucose uptake and oxidation tests. Adipocytes from detrained animals increased their glucose uptake capacity by 18.5% compared with those from sedentary animals (P<0.05). The same cells also showed a greater glucose oxidation capacity in response to insulin stimulation (34.55%) compared with those from the S group (P<0.05). We hypothesize that, owing to the more intense glucose entrance into adipose cells from detrained rats, more substrate became available for triacylglycerol synthesis. Furthermore, this increased glucose oxidation rate allowed an increase in energy supply for triacylglycerol synthesis. Thus, physical detraining might play a role as a possible obesogenic factor for increasing glucose uptake and oxidation by adipocytes.