105 resultados para intergenic spacer
Resumo:
Anopheles (Nyssorhynchus) marajoara is a proven primary vector of malaria parasites in Northeast Brazil, and An. deaneorum is a suspected vector in Western Brazil. Both are members of the morphologically similar Albitarsis Complex, which also includes An. albitarsis and an undescribed species, An. albitarsis "B". These four species were recognized and can be identified using random amplified polymorphic DNA (RAPD) markers, but various other methodologies also point to multiple species under the name An. albitarsis. We describe here a technique for identification of these species employing polymerase chain reaction (PCR) primers based on ribosomal DNA internal transcribed spacer 2 (rDNA ITS2) sequence. Since this method is based on known sequence it is simpler than the sometimes problematical RAPD-PCR. Primers were tested on samples previously identified using RAPD markers with complete correlation.
Resumo:
Among the molecular markers commonly used for mosquito taxonomy, the internal transcribed spacer 2 (ITS2) of the ribosomal DNA is useful for distinguishing among closely-related species. Here we review 178 GenBank accession numbers matching ITS2 sequences of Latin American anophelines. Among those, we found 105 unique sequences corresponding to 35 species. Overall the ITS2 sequences distinguish anopheline species, however, information on intraspecific and geographic variations is scarce. Intraspecific variations ranged from 0.2% to 19% and our analysis indicates that misidentification and/or sequencing errors could be responsible for some of the high values of divergence. Research in Latin American malaria vector taxonomy profited from molecular data provided by single or few field capture mosquitoes. However we propose that caution should be taken and minimum requirements considered in the design of additional studies. Future studies in this field should consider that: (1) voucher specimens, assigned to the DNA sequences, need to be deposited in collections, (2) intraspecific variations should be thoroughly evaluated, (3) ITS2 and other molecular markers, considered as a group, will provide more reliable information, (4) biological data about vector populations are missing and should be prioritized, (5) the molecular markers are most powerful when coupled with traditional taxonomic tools.
Resumo:
Nuclear internal transcribed spacer 2 (ITS2) rDNA sequences were used for a molecular phylogenetics analysis of five Onchocerca species. The sister species of the human parasite O. volvulus was found to be the cattle parasite O. ochengi and not O. gibsoni, contrary to chromosomal evidence. The genetic differentiation of two African populations (representing the two African strains) and a Brazilian population of O. volvulus was also studied. Phylogenetic and network reconstruction did not show any clustering of ITS2 alleles on geographic or strain grounds. Furthermore, population genetics tests showed no indication of population differentiation but suggested gene flow among the three populations.
Resumo:
Culex is the largest genus of Culicini and includes vectors of several arboviruses and filarial worms. Many species of Culex are morphologically similar, which makes their identification difficult, particularly when using female specimens. To aid evolutionary studies and species distinction, molecular techniques are often used. Sequences of the second internal transcribed spacer (ITS2) of ribosomal DNA (rDNA) from 16 species of the genus Culex and one of Lutzia were used to assess their genomic variability and to verify their applicability in the phylogenetic analysis of the group. The distance matrix (uncorrected p-distance) that was obtained revealed intragenomic and intraspecific variation. Because of the intragenomic variability, we selected ITS2 copies for use in distance analyses based on their secondary structures. Neighbour-joining topology was obtained with an uncorrected p-distance. Despite the heterogeneity observed, individuals of the same species were grouped together and correlated with the current, morphology-based classification, thereby showing that ITS2 is an appropriate marker to be used in the taxonomy of Culex.
Resumo:
The flaviviral envelope proteins, E protein and precursor membrane protein, are mainly associated with the endoplasmic reticulum (ER) through two transmembrane (TM) domains that are exposed to the luminal face of this compartment. Their retention is associated with the viral assembly process. ER-retrieval motifs were mapped at the carboxy terminus of these envelope proteins. A recombinant yellow fever (YF) 17D virus expressing the reporter green fluorescent protein (GFP) with the stem-anchor (SA) region of E protein fused to its carboxy terminus was subjected to distinct genetic mutations in the SA sequence to investigate their effect on ER retention. Initially, we introduced progressive deletions of the stem elements (H1, CS and H2). In a second set of mutants, the effect of a length increase for the first TM anchor region was evaluated either by replacing it with the longer TM of human LAMP-1 or by the insertion of the VALLLVA sequence into its carboxy terminus. We did not detect any effect on the GFP localisation in the cell, which remained associated with the ER. Further studies should be undertaken to elucidate the causes of the ER retention of recombinant proteins expressed at the intergenic E/NS1 region of the YF 17D virus polyprotein.
Resumo:
Trypanosomatidae is a family of early branching eukaryotes harbouring a distinctive repertoire of gene expression strategies. Functional mature messenger RNA is generated via the trans-splicing and polyadenylation processing of constitutively transcribed polycistronic units. Recently, trans-splicing of pre-small subunit ribosomal RNA in the 5' external transcribed spacer region and of precursor tRNAsec have been described. Here, we used a previously validated semi-nested reverse transcription-polymerase chain reaction strategy to investigate internal transcribed spacer (ITS) I acceptor sites in total RNA from Leishmania (Leishmania) amazonensis. Two distinct spliced leader-containing RNAs were detected indicating that trans-splicing reactions occur at two AG acceptor sites mapped in this ITS region. These data provide further evidence of the wide spectrum of RNA molecules that act as trans-splicing acceptors in trypanosomatids.
Resumo:
Triatoma dimidiata is the most important Chagas disease insect vector in Central America as this species is primarily responsible for Trypanosoma cruzi transmission to humans, the protozoan parasite that causes Chagas disease. T. dimidiata sensu lato is a genetically diverse assemblage of taxa and effective vector control requires a clear understanding of the geographic distribution and epidemiological importance of its taxa. The nuclear ribosomal internal transcribed spacer 2 (ITS-2) is frequently used to infer the systematics of triatomines. However, oftentimes amplification and sequencing of ITS-2 fails, likely due to both the large polymerase chain reaction (PCR) product and polymerase slippage near the 5' end. To overcome these challenges we have designed new primers that amplify only the 3'-most 200 base pairs of ITS-2. This region distinguishes the ITS-2 group for 100% of known T. dimidiata haplotypes. Furthermore, we have developed a PCR-restriction fragment length polymorphism (RFLP) approach to determine the ITS-2 group, greatly reducing, but not eliminating, the number of amplified products that need to be sequenced. Although there are limitations with this new PCR-RFLP approach, its use will help with understanding the geographic distribution of T. dimidiata taxa and can facilitate other studies characterising the taxa, e.g. their ecology, evolution and epidemiological importance, thus improving vector control.
Resumo:
A single polymerase chain reaction (PCR) reaction targeting the spliced-leader intergenic region of Trypanosoma cruzi I was standardised by amplifying a 231 bp fragment in domestic (TcIDOM) strains or clones and 450 and 550 bp fragments in sylvatic strains or clones. This reaction was validated using 44 blind coded samples and 184 non-coded T. cruzi I clones isolated from sylvatic triatomines and the correspondence between the amplified fragments and their domestic or sylvatic origin was determined. Six of the nine strains isolated from acute cases suspected of oral infection had the sylvatic T. cruzi I profile. These results confirmed that the sylvatic T. cruzi I genotype is linked to cases of oral Chagas disease in Colombia. We therefore propose the use of this novel PCR reaction in strains or clones previously characterised as T. cruziI to distinguish TcIDOMfrom sylvatic genotypes in studies of transmission dynamics, including the verification of population selection within hosts or detection of the frequency of mixed infections by both T. cruzi I genotypes in Colombia.
Resumo:
Currently, it is accepted that there are three species that were formerly grouped under Candida parapsilosis: C. para- psilosis sensu stricto, Candida orthopsilosis, andCandida metapsilosis. In fact, the antifungal susceptibility profiles and distinct virulence attributes demonstrate the differences in these nosocomial pathogens. An accurate, fast, and economical identification of fungal species has been the main goal in mycology. In the present study, we searched sequences that were available in the GenBank database in order to identify the complete sequence for the internal transcribed spacer (ITS)1-5.8S-ITS2 region, which is comprised of the forward and reverse primers ITS1 and ITS4. Subsequently, an in silico polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) was performed to differentiate the C. parapsilosis complex species. Ninety-eight clinical isolates from patients with fungaemia were submitted for analysis, where 59 isolates were identified as C. parapsilosis sensu stricto, 37 were identified as C. orthopsilosis, and two were identified as C. metapsilosis. PCR-RFLP quickly and accurately identified C. parapsilosis complex species, making this method an alternative and routine identification system for use in clinical mycology laboratories.
Resumo:
The aim of the present study was to determine biological characteristics such as expression of fimbriae, Congo red binding, production of hemolysin and aerobactin, adhesion to HeLa and uroepithelial cells and invasion of HeLa cells by Escherichia coli isolates obtained from patients showing clinical signs of urinary tract infection (UTI). Also, the presence of genes (apa, afa, spa) for fimbria expression and cytotoxic necrotizing factors (CNF1, CNF2) was assayed using specific primers in PCR. The data obtained were compared with the clonal relationships obtained by analysis of multilocus enzyme electrophoresis (MLEE), restriction fragment length polymorphism (RFLP) of the rDNA (ribotyping) and enterobacterial repetitive intergenic consensus-PCR (ERIC-PCR). All isolates but one presented a combination of at least two of the characteristics studied, a fact suggesting the presence of pathogenicity islands (PAIs). Diffuse adherence type to HeLa cells was observed to occur in most of the strains, but adhesion to uroepithelial cells seems to be a more reliable test to verify pathogenicity. Although four strains seemed to be able to invade HeLa cells when assayed by light microscopy, electron microscopy studies demonstrated that these strains were not invasive. MLEE, RFLP and ERIC-PCR were able to group the isolates differently into main clusters that were not correlated with the presence of pathogenic traits.
Resumo:
Salmonella Infantis has been the second most common serovar in Argentina in the last two years, being isolated mostly from paediatric hospitalised patients. In order to determine the clonal relationship among Salmonella Infantis strains, we examined 15 isolates from paediatric patient faeces in Argentina (12 geographically related and 3 geographically non-related) by using antimicrobial susceptibility, plasmid profiling, repetitive extragenic palindromic (REP) PCR, enterobacterial repetitive intergenic consensus (ERIC) PCR, and low-frequency restriction analysis of chromosomal DNA by pulsed field gel electrophoresis (PFGE). Four Spanish strains were included as controls of clonal diversity in molecular techniques. Antibiotype and plasmid profile was not useful as epidemiological tools. PFGE and REP-PCR were able to discriminate between Argentinean and Spanish isolates of Salmonella Infantis allowing to detect genetically related strains in three different cities. This finding indicates that a possible spread of a clone of this serovar in the North-eastern Region of Argentina has taken place in 1998.
Resumo:
DNA amplification techniques are being used increasingly in clinical laboratories to confirm the identity of medically important bacteria. A PCR-based identification method has been in use in our centre for 10 years for Burkholderia pseudomallei and was used to confirm the identity of bacteria isolated from cases of melioidosis in Ceará since 2003. This particular method has been used as a reference standard for less discriminatory methods. In this study we evaluated three PCR-based methods of B. pseudomallei identification and used DNA sequencing to resolve discrepancies between PCR-based results and phenotypic identification methods. The established semi-nested PCR protocol for B. pseudomallei 16-23s spacer region produced a consistent negative result for one of our 100 test isolates (BCC #99), but correctly identified all 71 other B. pseudomallei isolates tested. Anomalous sequence variation was detected at the inner, reverse primer binding site for this method. PCR methods were developed for detection of two other B. pseudomallei bacterial metabolic genes. The conventional lpxO PCR protocol had a sensitivity of 0.89 and a specificity of 1.00, while a real-time lpxO protocol performed even better with sensitivity and specificity of 1.00, and 1.00. This method identified all B. pseudomallei isolates including the PCR-negative discrepant isolate. The phaC PCR protocol detected the gene in all B. pseudomallei and all but three B. cepacia isolates, making this method unsuitable for PCR-based identification of B. pseudomallei. This experience with PCR-based B. pseudomallei identification methods indicates that single PCR targets should be used with caution for identification of these bacteria, and need to be interpreted alongside phenotypic and alternative molecular methods such as gene sequencing.
Resumo:
Dermatophytes are among the most frequent causes of ringworm infections in domesticated animals. They are known to serve as reservoirs of the zoophilic dermatophytes and these infections have important zoonotic implication. In Nigeria and probably West Africa, there are not many studies on the incidence of dermatophytosis in domesticated animals. In the current study, 538 domesticated animals with clinically suggestive lesions were investigated for dermatophytes. Identification of dermatophyte species was performed by macro- and micro morphological examination of colonies and by biochemical methods. In the cases of isolates that had atypical morphology and/or biochemical test results, the rDNA internal transcribed spacer region 2 (ITS 2) sequencing was performed. Out of this number, 214 (39.8%) were found to be colonized by a variety of ten species of dermatophytes. M. canis was the most frequently isolated species (37.4%), followed by T. mentagrophytes (22.9%) and T. verrucosum (15.9%). M. persicolor and T. gallinae were jointly the least species isolated with a frequency of 0.55% respectively. The recovery of dermatophyte isolates previously shown to be common etiological agents of dermatophytosis especially from children in the same region suggests that animal to human transmission may be common. Possible implications and recommendations are discussed.
Resumo:
Bacteria of the genus Bartonella are emerging pathogens detected in lymph node biopsies and aspirates probably caused by increased concentration of bacteria. Twenty-three samples of 18 patients with clinical, laboratory and/or epidemiological data suggesting bartonellosis were subjected to three nested amplifications targeting a fragment of the 60-kDa heat shock protein (HSP), the internal transcribed spacer 16S-23S rRNA (ITS) and the cell division (FtsZ) of Bartonella henselae, in order to improve detection in clinical samples. In the first amplification 01, 04 and 05 samples, were positive by HSP (4.3%), FtsZ (17.4%) and ITS (21.7%), respectively. After the second round six positive samples were identified by nested-HSP (26%), eight by nested-ITS (34.8%) and 18 by nested-FtsZ (78.2%), corresponding to 10 peripheral blood samples, five lymph node biopsies, two skin biopsies and one lymph node aspirate. The nested-FtsZ was more sensitive than nested-HSP and nested-ITS (p < 0.0001), enabling the detection of Bartonella henselae DNA in 15 of 18 patients (83.3%). In this study, three nested-PCR that should be specific for Bartonella henselae amplification were developed, but only the nested-FtsZ did not amplify DNA from Bartonella quintana. We conclude that nested amplifications increased detection of B. henselae DNA, and that the nested-FtsZ was the most sensitive and the only specific to B. henselae in different biological samples. As all samples detected by nested-HSP and nested-ITS, were also by nested-FtsZ, we infer that in our series infections were caused by Bartonella henselae. The high number of positive blood samples draws attention to the use of this biological material in the investigation of bartonellosis, regardless of the immune status of patients. This fact is important in the case of critically ill patients and young children to avoid more invasive procedures such as lymph nodes biopsies and aspirates.
Resumo:
A case of HIV/Leishmania co-infection presenting both visceral and cutaneous manifestations is reported. Leishmania infection was confirmed by conventional methods (parasitological approach and serology) and by PCR. Leishmania chagasi isolated from the skin lesion was characterized by enzyme electrophoresis and by restriction fragment length polymorphism of the internal transcribed spacer of the ribosomal gene.