83 resultados para instars
Resumo:
The Mansonella ozzardi has a widespread distribution among the indigenous and riverine communities of Amazonas, Brazil. We estimated the prevalence of Mansonella ozzardi in indigenous communities of the Pauini municipality, Amazonas state, Brazil and the rate of parasitic infection in vectors. We collected thick blood smears from individuals from six Apurinã indigenous communities along the Purus River and its tributaries. Collections of simuliids were made and dissected, and the larval instars of M. ozzardi identified. The overall prevalence of M. ozzardi was 28.40%, with the highest incidence among males and agricultural workers. Among age groups, children 2-9 years of age had the lowest incidence, while individuals older than 58 exhibited the highest rates of infection. We found infected simuliids in three communities, with Parasitic Infection Rates (PIR) of 0.34-6.58%. The prevalence of M. ozzardi among the Apurinã people is high, possibly related to the diary activities of the riparian people, where a high abundance of the vectors exists.
Resumo:
Biology of Arsenura xanthopus (Walker, 1855) (Lep., Adelocephalidae), a pest of Luehea spp. (Tiliaceae), and notes on its natural enemies. In the beginning of 1950, one of the Authors made some observations about the biology of Arsenura xanthopus (Walker), in Piracicaba, State of S. Paulo, Brazil. From 1951 to 1953, both Authors continued the observations on such an important Adelocephalidae, the caterpillars of which represent a serious pest of Luehea spp. leaves. Actually, in some occasions, the caterpillars can destroy completely the leaves of the trees. The species is efficientely controlled by two natural enemies: an egg parasite (Tetrastichus sp., Hym., Eulophidae) and a fly attacking the last instar caterpillar (Winthemia tricolor (van der Wulp), Dip., Tachinidae). Tetrastichus sp. can destroy 100% of the eggs and the fly, 70 to 100% of the caterpillars. Indeed, facts as such are very interesting because we rarely know of a case of so complete a control of a pest by an insect. A. xanthopus had not yet been mentioned in our literature. Actually neither the systematic bibliography nor the economic one has treated of this species. However, a few other species of Arsenura are already known as living on Luehea spp. According to the Authors' observations, W. tricolor was also unknown by the Brazilian entomological literature. Arsenura xanthopus (Walker, 1855) After giving the sinonimy and a few historical data concerning the species, and its geographical distribution, the Authors discuss its placing in the genus Arsenura Duncan or Rhescyntis Huebner, finishing by considering Arsenura xanthopus as a valid name. The Authors put the species in the family Adelocephalidae, as it has been made by several entomologists. The host plant The species of Tiliaceae plants belonging to the genus Luehea are called "açoita-cavalo" and are well known for the usefulness of their largely utilized wood. The genus comprises exclusively American plants, including about 25 species distributed throughout the Latin America. Luehea divaricata Mart, is the best known species and the most commonly cultivated. Biology of Arsenura xanthopus Our observations show that the species passes by 6 larval stages. Eggs and egg-postures, all the 6 instars of the caterpillars as well as the chrysalid are described. The pupal period is the longest of the cycle, taking from 146 to 256 days. Data on the eclosion and habits of the caterpillars are also presented. A redescription of the adult is also given. Our specimens agreed with BOUVIER's description, except in the dimension between the extremities of the extended wings, which is a little shorter (107 mm according to BOUVlErVs paper against from 80 to 100mm in our individuals). Winthemia tricolor (van der Wulp, 1890) Historical data, geographical distribution and host are first related. W. tricolor had as yet a single known host-; Ar^-senura armida (Cramer). This chapter also contains some observations on the biolcn gy of the fly and on its behaviour when trying to lay eggs on the caterpillars' skin. The female of W. tricolor lays from 1 to 33 eggs on the skin of the last instar caterpillar. The mam region of the body where the eggs are laid are the membranous legs. Eggs are also very numerous oh the ventral surface of the thorax and abdomen. The. preference for such regions is easily cleared up considering the position assumed by the caterpillar when fixed motionless in a branch. In such an occasion, the fly approaches, the victim, puts the ovipositor out and lays the eggs on different parts of the body, mainly on the mentioned regions, which are much more easily reached. The eggs of the fly are firmly attached to the host's skin, being almost impossible to detach them, without having them broken. The minute larvae of the fly enter the body of, the host when it transforms into chrysalid. Chrysalids recentely formed and collected in nature f requentely show a few small larvae walking on its skin and looking for an adequate place to get into the body. A few larvae die by remaining in the skin of the caterpillar which is pushed away to some distance by the active movements of the chrysalid recentely formed. From 1 to 10 larvae completely grown may emerge from the attacked chrysalid about 8 days after their penetrating into the caterpillars' body and soon begin to look for an adequate substratum where they can transform themselves into pupae. In natural conditions, the metamorphosis occurs in the soil. The flies appear within 15 days. Tetrastichus sp. This microhymenoptera is economically the most interesting parasite, being commonly able to destroy the whole pos^ ture of the moth. Indeed, some days after the beginning of the infestation of the trees, it is almost impossible to obtain postures completely free of parasites. The active wasp introduces the ovipositor into the egg of the moth, laying its egg inside, from 80 to 120 seconds after having introduced it. A single adult wasp emerges from each egg. Sarcophaga lambens Wiedemann, 1830 During the observations carried out, the Authors obtained 10 flies from a chysalid that were recognized as belonging to the species above. S. lambens is a widely distributed Sarcophagidae, having a long list of hosts. It is commonly obtained from weak or died invertebrates, having no importance as one of their natural enemies. Sinonimy, list of hosts and distribution are presented in this paper. Control of Arsenura xanthopus A test has been carefully made in the laboratory just to find out the best insecticide for controlling A. xanthopus caterpillars. Four different products were experimented (DDT, Pa-rathion, BHC and Fenatox), the best results having been obtained with DDT at 0,25%. However, the Authors believe in spite of the initial damages of the trees, that the application of an insecticide may be harmful by destroying the natural agents of control. A biological desiquilibrium may in this way take place. The introduction of the parasites studied (Tetrastichus sp. and Winthemia tricolor) seems to be the most desirable measure to fight A. xanthopus.
Resumo:
The effect of intraspecific competition for food on larvae and of food deprivation for 24 h on 2nd and 4th instars of Ascia monuste orseis (Godart, 1819) was investigated. Intraspecific competition for food during the immature phase leads to long pupation time, high larval mortality, reduced adult weight, and reduced number of eggs per female. In food deprivation experiments, the major differences in A. monuste orseis performance were long pupation time in the group that was deprived during the 2nd instar; and a negative effect on reproduction in the group that was deprived during the 4th instar, with reduced adult weight. Both food deprived periods tested are critical, and deprivation during the 2nd instar seems to have an effect as drastic as during the 4th instar because it directly affects larvae survival. Immatures can resist food deprivation for 24 h during the 2nd and 4th instars (low mortality), have a compensatory behaviour (high ingestion and biomass gain) during the 5th instar, and do not demonstrate cannibalistic behaviour during food deprivation.
Resumo:
The three nymphal instars of Abrocomophaga hellenthali Price & Timm, 2000 are described and compared with both sexes of the adult stage. The most remarkable quali and quantitative body features of all instars are cathegorized and its progression along the development stated.
Resumo:
A colony of Synthesiomyia nudiseta (WULP, 1883) was established in the laboratory to obtain eggs, larvae and puparium, to determine the period of development and viability at constant temperature with RH above 75% and photoperiod of 12 h. The viability of development cicle was 48.68%. Incubation period was 21.17 h, larvae development 25.97; 48.08 and 233.65 h for the first, second and feeding phase of third instars, respectively. The development period of postfeeding larva, prepupa and pupa development was 322.26 h.
Resumo:
Ostracods were collected on Sargassum sp. from the littoral of São Sebastião, São Paulo State, southeastern Brazil. A new species, Aurila ornellasae, is illustrated and described based on a population with various instars and adult specimens. This is the first living species of this genus described from Brazil. A brief discussion on the systematics of the genus Aurila Pokorný, 1955 and its allied genera is presented.
Resumo:
Egg case, larvae and pupa of Hydrophilus (Dibolocelus) palpalis are described and illustrated. The aquaria-terraria method was used to rear immature instars in the laboratory.
Resumo:
Species of Chydoridae provide the main diversity of the Cladocera. These organisms have been the subject of many studies; some dealing with their role in energy flow in aquatic ecosystems, since they inhabit the littoral region of water bodies which undergo the first impacts from anthropic activities. The aim of this study is to increase knowledge about the life cycle of Coronatella rectangula (Sars, 1861), a species found in several water bodies in the state of Minas Gerais, Brazil. The life cycle was determined by the culture of parthenogenetic females under controlled conditions in the laboratory. Experimental cultures were maintained in growth chambers at a constant temperature of 23.6(±0.5)ºC, through a 12 h light/12 h dark photoperiod. The organisms were fed on a suspension of Pseudokirchneriella subcapitata (Chlorophyceae) (10(5) cells.mL-1), and 0.02 mL of a mixed suspension of yeast and fish ration added per organism in equal proportions (1:1). Fifty parthenogenetic females with eggs were isolated and maintained until they produced neonates. Thirty of these neonates that had less than 24 hours were put in polypropylene bottles of 50 mL and kept in a germination chamber. These organisms were observed daily to obtain the parameters of the life cycle. Biomass and secondary production were also calculated. The embryonic development time of the specimens of C. rectangula was 1.68(±0.13) days and the time to reach primipara, was 2.48(±0.45) days. The mean fecundity of C. rectangula was two eggs/female/brood and the total number of eggs produced by the female during its life cycle was 27.8 eggs. During the whole life cycle, specimens of C. rectangula had a maximum of 14 seedlings, with two instars in the juvenile stage. Total biomass for C. rectangula was 36.66 µgDW.m-3(9.83 for the juvenile stage and 26.82 µgDW.m-3 for adults), and secondary production was 12.10 µgDW.m-3.day-1(8.34 µgDW.m-3.day-1 for egg production and 3.76 µgDW.m-3.day-1 for the juvenile stage).
Resumo:
The nymphal instars I and III - V of Sigara (Tropocorixa) denseconscripta (Breddin, 1897) are figured and described in detail, for the first time, with emphasis on morphometry and chaetotaxy of selected structures. The useful characters to identify the nymphal instars and the nymphs of the species of Sigara are provided.
Resumo:
ABSTRACT The biology and morphology of the immature stages of Heliconius sara apseudes (Hübner, [1813]) are still little known. External features of the egg, larvae and pupa of H. sara apseudes are described and illustrated, based upon light and scanning electron microscopy. Eggs with smooth carina, first instar larva with scaly setae, and body of second to fifth instars covered with scattered pinnacles distinguish H. sara apseudes from other heliconiine species.
Resumo:
The present work deals with the systematic, biological and economic problems related to Corythaica cyathicollis (Costa, 1864) (Hemip., Tingidae). In the first part are presented the generic characteristics of Corythaica and is discussed the status of the specific name. The validity of C. cyathicollis, as stated by DRAKE and his collaborators, was denied by MONTE in his last works, he considered the species as C. passiflorae. Even in the modern literature no agreement has been achieved and three names are still used (cyathicollis, passiflorae and planaris) to designate the same insect. In order to resolve definitively this problem, a Neotype is designed to fill the place of the missing type of C. cyathicollis. Also in the first parte is discussed the taxonomic value of both male and female genitalia. The whole male copulator apparatus is studied and are illustrated the genital capsules of 8 species of this genus. Special mention is made of the shape of the basal plates and the proportions of the segmental membrana. The female genitalia is studied based upon the work of FELDMAN & BAILEY (1952). In the second part the biological cycle of C. cyathicollis is carefully studied. Descriptions of the egg are done and the ways of oviposition. The number of eggs laid by the female was observed to be about 350, during a period of more than 45 days. The eclosion of the neanide I is illustrated in some of its phases and the 5 larval instars are described and illustrated. Ending this part are included the lists of parasites and predators observed as well as the plant hosts. The actual geographical distribution is presented, based chiefly on HURD (1945). The economic problems concerning this species are reported in the third part of the work, and the ways of control are discussed. An experiment was carried out involving 4 insecticides: Malathion and Parathion, commonly used against this "lace bug"; Toxaphene and Dimethoate (American Cyanamid 12.880), the last one is an insecticide recently introduced in Brazil and was not previously used for these purposes, but gave the best results and it is quite able to control these insects even on crops showing highly developed infestations.
Resumo:
The pathological effects of Trypanosoma rangeli on Rhodnius prolixus and R. robustus, and the relation of mortality to infection, were studied under laboratory conditions. Frequent observations revealed that when the first instar nymphs of R. prolixus and R. robustus were infected with T. rangeli, survival of the bugs during the stages of development to the adult stage decreased. This decrease was statistically significant when compared with uninfected control-bugs, indicating that T. rangeli is pathogenic for both species of triatomine. In R. prolixus the most affected nymphal stages were the first, second and fifth instars, where a higher mortality was also observed. In R. robustus a progressive increase of the mortality from the first to fifth instars, was observed. The pathogenicity of T. rangeli as measured by overall mortality was the same in R. prolixus and R. robustus. The possible pathogenic mechanism of T. rangeli in triatomine-bugs and its epidemiological implications, are discussed.
Resumo:
Frequent individual observations od different stages of Rhodnius prolixus exposed to Trypanosoma rangeli, revealed a higher susceptibility to infection in the bugs exposed during the two first instars. The mortality rate in infected bugs was significantly higher than in controls, indicating that the parasite was responsible for the majority of deaths. An analysis of the mortality distribution, per instar, is presented. Statistical analysis of deaths among the different infected instars, showed that T. rangeli produces its pathological effect in any stage of R. prolixus independently of its susceptibility to the parasite. The survival to adult decreased in all the infected instar bugs. A significant longer time to reach the adult stage was observed in the infected bugs when compared with controls, excepting for specimens exposed in the third instar. The epidemiological significance of the present results is discussed.
Resumo:
First and second instar larvae of some Sarcophagidae (Diptera) of the tribe Raviniini are described on observations with a scanning electron microscope.
Resumo:
The life cycle of ear mites of the genus Raillietia Trouessart consists of egg, larva, proto-and deutonymph and adult. The proto-and deutonymph are free living, non feeding instars. The teneral adult is the transfer stage. The minimum period required for completion of the life cycle is approximately eight days.