24 resultados para glucose photocatalysis selective oxidation titania gold silver nanoparticles
Resumo:
A study on the monitoring of glycerol oxidation catalyzed by gold nanoparticles supported on activated carbon under mild conditions by chemometric methods is presented. The reaction was monitored by mass spectrometry-electrospray ionization (ESI-MS) and comparatively by mid infrared spectroscopy (MIR). Concentration profiles of reagent and products were determined by chemometric tools such as Principal Component Analysis (PCA), Evolving Factor Analysis (EFA) and Multivariate Curve Resolution (MCR). The gold nanoparticle catalyst was relatively active in glycerol oxidation, favoring formation of high added value products. It was found that the reaction stabilization was reached at four hours, with approximately 70% glycerol conversion and high selectivity for glycerate.
Resumo:
Titanium dioxide nanostructured catalysts (nanotubes) doped with different metals (silver, gold, copper, palladium and zinc) were synthesized by the hydrothermal method in order to promote an increase in their photocatalytic activity under visible light. The catalysts were characterized by X-ray diffraction, diffuse reflectance spectroscopy, transmission electron microscopy and specific area and pore volume determination. The materials' photocatalytic activity was evaluated by rhodamine B decomposition in a glass batch reactor. Under UV radiation, only nanotubes doped with palladium were more active than the TiO2 P25, but the samples doped with silver, palladium and gold exhibited better results than the undoped samples under visible light.
Resumo:
The synthesis of gold nanoparticles (Au NPs) 15, 26, and 34 nm in diameter, followed by the investigation of their size-dependent optical and catalytic properties, is described herein as an undergraduate level experiment. The proposed experiment covers concepts on the synthesis, stabilization, and characterization of Au NPs, their size-dependent optical and catalytic properties at the nanoscale, chemical kinetics, and the role of a catalyst. The experiment should be performed by groups of two or three students in three lab sessions of 3 h each and organized as follows: i) synthesis of Au NPs of different sizes and investigation of their optical properties; ii) evaluation of their catalytic activity; and iii) data analysis and discussion. We believe that this activity enables students to integrate these multidisciplinary concepts in a single experiment as well as to become introduced/familiarized with an active research field and current literature in the areas of nanoparticle synthesis and catalysis.
Resumo:
Electrodes consisting of Pt nanoparticles dispersed on thin films of niobium oxide were prepared onto titanium substrates by a sol-gel method. The physical characterization of these electrodes was carried out by X-ray diffraction, scanning electron microscopy and energy dispersive X-ray analysis. The mean size of the Pt particles was found to be 10.7 nm. The general aspects of the electrochemical behavior were studied by cyclic voltammetry in 1 mol L-1 HClO4 aqueous solution. The response of these electrodes in relation to the oxidation of formaldehyde and methanol in acidic media was also studied.
Resumo:
Proso millet (Panicum miliaceum L.) is a serious weed in North America. A high number of wild proso millet biotypes are known but the genetic basis of its phenotypic variation is poorly understood. In the present study, a non-radioactive silver staining method for PCR-Amplified Fragment Length Polymorphism (AFLP) was evaluated for studying genetic polymorphism in American proso millet biotypes. Twelve biotypes and eight primer combinations with two/three and three/three selective nucleotides were used. Pair of primers with two/three selective nucleotides produced the highest number of amplified DNA fragments, while pair of primers with three/three selective nucleotides were more effective for revealing more polymorphic DNA fragments. The two better primer combinations were EcoR-AAC/Mse-CTT and EcoR-ACT/Mse-CAA with seven and eleven polymorphic DNA fragments, respectively. In a total of 450 amplified fragments, at least 339 appeared well separated in a silver stained acrylamide gel and 39 polymorphic DNA bands were scored. The level of polymorphic DNA (11.5%) using only eight pairs of primers were effective for grouping proso millet biotypes in two clusters but insufficient for separating hybrid biotypes from wild and crop. Nevertheless, the present result indicates that silver stained AFLP markers could be a cheap and important tool for studying genetic relationships in proso millet.
Resumo:
In tumor-bearing rats, most of the serum amino acids are used for synthesis and oxidation processes by the neoplastic tissue. In the present study, the effect of Walker 256 carcinoma growth on the intestinal absorption of leucine, methionine and glucose was investigated in newly weaned and mature rats. Food intake and carcass weight were decreased in newly weaned (NT) and mature (MT) rats bearing Walker 256 tumor in comparison with control animals (NC and MC). The tumor/carcass weight ratio was higher in NT than in MT rats, whereas nitrogen balance was significantly decreased in both as compared to control animals. Glucose absorption was significantly reduced in MT rats (MT = 47.3 ± 4.9 vs MC = 99.8 ± 5.3 nmol min-1 cm-1, Kruskal-Wallis test, P<0.05) but this fact did not hamper the evolution of cancer. There was a significant increase in methionine absorption in both groups (NT = 4.2 ± 0.3 and MT = 2.0 ± 0.1 vs NC = 3.7 ± 0.1 and MC = 1.2 ± 0.2 nmol min-1 cm-1, Kruskal-Wallis test, P<0.05), whereas leucine absorption was increased only in young tumor-bearing rats (NT = 8.6 ± 0.2 vs NC = 7.7 ± 0.4 nmol min-1 cm-1, Kruskal-Wallis test, P<0.05), suggesting that these metabolites are being used for synthesis and oxidation processes by the neoplastic cells, which might ensure their rapid proliferation especially in NT rats.
Resumo:
Recognition and control of depression symptoms are important to increase patient compliance with treatment and to improve the quality of life of diabetic patients. Clinical studies indicate that selective serotonin reuptake inhibitors (SSRI) are better antidepressants for diabetic patients than other drugs. However, preclinical trials have demonstrated that not all SSRI reduce plasma glucose levels. In fact, fluoxetine increases and sertraline decreases glycemia in diabetic and non-diabetic rats. In the present study we evaluated plasma insulin levels during fasting and after glucose overload after treatment with sertraline. Adult male Wistar rats were fasted and treated with saline or 30 mg/kg sertraline and submitted or not to glucose overload (N = 10). Blood was collected and plasma insulin was measured. The mean insulin levels were: fasting group: 25.9 ± 3.86, sertraline + fasting group: 31.10 ± 2.48, overload group: 34.1 ± 3.40, and overload + sertraline group: 43.73 ± 5.14 µU/ml. Insulinemia was significantly increased in the overload + sertraline group. There were no differences between the other groups. No difference in glucose/insulin ratios could be detected between groups. The overload + sertraline group was the only one in which a significant number of individuals exceeded the upper confidence limit of insulin levels. This study demonstrates that sertraline increases glucose-stimulated insulin secretion without any change in peripheral insulin sensitivity.
Resumo:
Hypochlorous acid (HOCl) released by activated leukocytes has been implicated in the tissue damage that characterizes chronic inflammatory diseases. In this investigation, 14 indole derivatives, including metabolites such as melatonin, tryptophan and indole-3-acetic acid, were screened for their ability to inhibit the generation of this endogenous oxidant by stimulated leukocytes. The release of HOCl was measured by the production of taurine-chloramine when the leukocytes (2 x 10(6) cells/mL) were incubated at 37ºC in 10 mM phosphate-buffered saline, pH 7.4, for 30 min with 5 mM taurine and stimulated with 100 nM phorbol-12-myristate acetate. Irrespective of the group substituted in the indole ring, all the compounds tested including indole, 2-methylindole, 3-methylindole, 2,3-dimethylindole, 2,5-dimethylindole, 2-phenylindole, 5-methoxyindole, 6-methoxyindole, 5-methoxy-2-methylindole, melatonin, tryptophan, indole-3-acetic acid, 5-methoxy-2-methyl-3-indole-acetic acid, and indomethacin (10 µM) inhibited the chlorinating activity of myeloperoxidase (MPO) in the 23-72% range. The compounds 3-methylindole and indole-3-acetic acid were chosen as representative of indole derivatives in a dose-response study using purified MPO. The IC50 obtained were 0.10 ± 0.03 and 5.0 ± 1.0 µM (N = 13), respectively. These compounds did not affect the peroxidation activity of MPO or the production of superoxide anion by stimulated leukocytes. By following the spectral change of MPO during the enzyme turnover, the inhibition of HOCl production can be explained on the basis of the accumulation of the redox form compound-II (MPO-II), which is an inactive chlorinating species. These results show that indole derivatives are effective and selective inhibitors of MPO-chlorinating activity.
Resumo:
The importance of the kidney in glucose homeostasis has been recognized for many years. Recent observations indicating a greater role of renal glucose metabolism in various physiologic and pathologic conditions have rekindled the interest in renal glucose handling as a potential target for the treatment of diabetes. The enormous capacity of the proximal tubular cells to reabsorb the filtered glucose load entirely, utilizing the sodium-glucose co-transporter system (primarily SGLT-2), became the focus of attention. Original studies conducted in experimental animals with the nonspecific SGLT inhibitor phlorizin showed that hyperglycemia after pancreatectomy decreased as a result of forced glycosuria. Subsequently, several compounds with more selective SGLT-2 inhibition properties (“second-generation”) were developed. Some agents made it into pre-clinical and clinical trials and a few have already been approved for commercial use in the treatment of type 2 diabetes. In general, a 6-month period of therapy with SGLT-2 inhibitors is followed by a mean urinary glucose excretion rate of ~80 g/day accompanied by a decline in fasting and postprandial glucose with average decreases in HgA1C ~1.0%. Concomitant body weight loss and a mild but consistent drop in blood pressure also have been reported. In contrast, transient polyuria, thirst with dehydration and occasional hypotension have been described early in the treatment. In addition, a significant increase in the occurrence of uro-genital infections, particularly in women has been documented with the use of SGLT-2 inhibitors. Conclusion: Although long-term cardiovascular, renal and bone/mineral effects are unknown SGLT-2 inhibitors, if used with caution and in the proper patient provide a unique insulin-independent therapeutic option in the management of obese type 2 diabetes patients.