48 resultados para geological mapping
Resumo:
The characterization of expressed sequence tags (ESTs) generated from a cDNA library of Leishmania (Leishmania) amazonensis amastigotes is described. The sequencing of 93 clones generated new L. (L.) amazonensis ESTs from which 32% are not related to any other sequences in database and 68% presented significant similarities to known genes. The chromosome localization of some L. (L.) amazonensis ESTs was also determined in L. (L.) amazonensis and L. (L.) major. The characterization of these ESTs is suitable for the genome physical mapping, as well as for the identification of genes encoding cysteine proteinases implicated with protective immune responses in leishmaniasis.
Resumo:
This study was carried out to evaluate the molecular pattern of all available Brazilian human T-cell lymphotropic virus type 1 Env (n = 15) and Pol (n = 43) nucleotide sequences via epitope prediction, physico-chemical analysis, and protein potential sites identification, giving support to the Brazilian AIDS vaccine program. In 12 previously described peptides of the Env sequences we found 12 epitopes, while in 4 peptides of the Pol sequences we found 4 epitopes. The total variation on the amino acid composition was 9 and 17% for human leukocyte antigen (HLA) class I and class II Env epitopes, respectively. After analyzing the Pol sequences, results revealed a total amino acid variation of 0.75% for HLA-I and HLA-II epitopes. In 5 of the 12 Env epitopes the physico-chemical analysis demonstrated that the mutations magnified the antigenicity profile. The potential protein domain analysis of Env sequences showed the loss of a CK-2 phosphorylation site caused by D197N mutation in one epitope, and a N-glycosylation site caused by S246Y and V247I mutations in another epitope. Besides, the analysis of selection pressure have found 8 positive selected sites (w = 9.59) using the codon-based substitution models and maximum-likelihood methods. These studies underscore the importance of this Env region for the virus fitness, for the host immune response and, therefore, for the development of vaccine candidates.
Resumo:
Schistosomiasis mansoni is not just a physical disease, but is related to social and behavioural factors as well. Snails of the Biomphalaria genus are an intermediate host for Schistosoma mansoni and infect humans through water. The objective of this study is to classify the risk of schistosomiasis in the state of Minas Gerais (MG). We focus on socioeconomic and demographic features, basic sanitation features, the presence of accumulated water bodies, dense vegetation in the summer and winter seasons and related terrain characteristics. We draw on the decision tree approach to infection risk modelling and mapping. The model robustness was properly verified. The main variables that were selected by the procedure included the terrain's water accumulation capacity, temperature extremes and the Human Development Index. In addition, the model was used to generate two maps, one that included risk classification for the entire of MG and another that included classification errors. The resulting map was 62.9% accurate.
Resumo:
This was a descriptive, retrospective study, with a quantitative method, with the aim of analyzing the nursing diagnoses contained in the records of children of 0 to 36 months of age who attended infant health nursing consults. A documentary analysis and the cross-mapping technique were used. One hundred eighty-eight different nursing diagnoses were encountered, of which 33 (58.9%) corresponded to diagnoses contained in the Nomenclature of Nursing Diagnoses and Interventions and 23 (41.1%) were derived from ICNP® Version 1.0. Of the 56 nursing diagnoses, 43 (76.8%) were considered to be deviations from normalcy. It was concluded that the infant health nursing consults enabled the identification of situations of normalcy and abnormality, with an emphasis on the diagnoses of deviations from normalcy. Standardized language favors nursing documentation, contributing to the care of the patient and facilitating communication between nurses and other health professionals.
Resumo:
Objective:To identify the nursing care prescribed for patients in risk for pressure ulcer (PU) and to compare those with the Nursing Interventions Classification (NIC) interventions. Method: Cross mapping study conducted in a university hospital. The sample was composed of 219 adult patients hospitalized in clinical and surgical units. The inclusion criteria were: score ≤ 13 in the Braden Scale and one of the nursing diagnoses, Self-Care deficit syndrome, Impaired physical mobility, Impaired tissue integrity, Impaired skin integrity, Risk for impaired skin integrity. The data were collected retrospectively in a nursing prescription system and statistically analyzed by crossed mapping. Result: It was identified 32 different nursing cares to prevent PU, mapped in 17 different NIC interventions, within them: Skin surveillance, Pressure ulcer prevention and Positioning. Conclusion: The cross mapping showed similarities between the prescribed nursing care and the NIC interventions.
Resumo:
Objective: Identifying the prescribed nursing care for hospitalized patients at risk of falls and comparing them with the interventions of the Nursing Interventions Classifications (NIC). Method: A cross-sectional study carried out in a university hospital in southern Brazil. It was a retrospective data collection in the nursing records system. The sample consisted of 174 adult patients admitted to medical and surgical units with the Nursing Diagnosis of Risk for falls. The prescribed care were compared with the NIC interventions by the cross-mapping method. Results: The most prevalent care were the following: keeping the bed rails, guiding patients/family regarding the risks and prevention of falls, keeping the bell within reach of patients, and maintaining patients’ belongings nearby, mapped in the interventions Environmental Management: safety and Fall Prevention. Conclusion: The treatment prescribed in clinical practice was corroborated by the NIC reference.
Resumo:
OBJECTIVE Implementing cross-mapping of Nursing language terms with the terminology of NANDA International, contained in records of patients with Parkinson's disease in rehabilitation. METHOD Descriptive study of cross mapping, carried out in three steps. A simple random sample of 67 files of patients who participated in the rehabilitation in the period between March 2009 and April 2013. RESULTS We identified 454 terms of Nursing language that resulted in 54 diagnoses after cross-mapping, present in 11 of the 13 taxonomy domains. The most mapped diagnosis was "Impaired urinary elimination" (59.7%), followed by "Urgent urinary incontinence" (55.2%), "Willingness to self-control improved health" (50.7%), "Constipation" (47.8%) and "Compromised physical mobility" (29.9%). Seven described terms were not mapped due to a corresponding defining characteristic being absent. CONCLUSION It was possible to determine the profile of patients, as well as the complexity of nursing care in the rehabilitation of patients with Parkinson's disease.
Resumo:
Peatlands form in areas where net primary of organic matter production exceeds losses due to the decomposition, leaching or disturbance. Due to their chemical and physical characteristics, bogs can influence water dynamics because they can store large volumes of water in the rainy season and gradually release this water during the other months of the year. In Diamantina, Minas Gerais, Brazil, a peatland in the environmental protection area of Pau-de-Fruta ensures the water supply of 40,000 inhabitants. The hypothesis of this study is that the peat bogs in Pau-de-Fruta act as an environment for carbon storage and a regulator of water flow in the Córrego das Pedras basin. The objective of this study was to estimate the water volume and organic matter mass in this peatland and to study the influence of this environment on the water flow in the Córrego das Pedras basin. The peatland was mapped using 57 transects, at intervals of 100 m. Along all transects, the depth of the peat bog, the Universal Transverse Mercator (UTM) coordinates and altitude were recorded every 20 m and used to calculate the area and volume of the peatland. The water volume was estimated, using a method developed in this study, and the mass of organic matter based on samples from 106 profiles. The peatland covered 81.7 hectares (ha), and stored 497,767 m³ of water, representing 83.7 % of the total volume of the peat bog. The total amount of organic matter (OM) was 45,148 t, corresponding to 552 t ha-1 of OM. The peat bog occupies 11.9 % of the area covered by the Córrego das Pedras basin and stores 77.6 % of the annual water surplus, thus controlling the water flow in the basin and consequently regulating the water course.
Resumo:
The region of greatest variability on soil maps is along the edge of their polygons, causing disagreement among pedologists about the appropriate description of soil classes at these locations. The objective of this work was to propose a strategy for data pre-processing applied to digital soil mapping (DSM). Soil polygons on a training map were shrunk by 100 and 160 m. This strategy prevented the use of covariates located near the edge of the soil classes for the Decision Tree (DT) models. Three DT models derived from eight predictive covariates, related to relief and organism factors sampled on the original polygons of a soil map and on polygons shrunk by 100 and 160 m were used to predict soil classes. The DT model derived from observations 160 m away from the edge of the polygons on the original map is less complex and has a better predictive performance.
Resumo:
Digital information generates the possibility of a high degree of redundancy in the data available for fitting predictive models used for Digital Soil Mapping (DSM). Among these models, the Decision Tree (DT) technique has been increasingly applied due to its capacity of dealing with large datasets. The purpose of this study was to evaluate the impact of the data volume used to generate the DT models on the quality of soil maps. An area of 889.33 km² was chosen in the Northern region of the State of Rio Grande do Sul. The soil-landscape relationship was obtained from reambulation of the studied area and the alignment of the units in the 1:50,000 scale topographic mapping. Six predictive covariates linked to the factors soil formation, relief and organisms, together with data sets of 1, 3, 5, 10, 15, 20 and 25 % of the total data volume, were used to generate the predictive DT models in the data mining program Waikato Environment for Knowledge Analysis (WEKA). In this study, sample densities below 5 % resulted in models with lower power of capturing the complexity of the spatial distribution of the soil in the study area. The relation between the data volume to be handled and the predictive capacity of the models was best for samples between 5 and 15 %. For the models based on these sample densities, the collected field data indicated an accuracy of predictive mapping close to 70 %.
Resumo:
Is it possible to build predictive models (PMs) of soil particle-size distribution (psd) in a region with complex geology and a young and unstable land-surface? The main objective of this study was to answer this question. A set of 339 soil samples from a small slope catchment in Southern Brazil was used to build PMs of psd in the surface soil layer. Multiple linear regression models were constructed using terrain attributes (elevation, slope, catchment area, convergence index, and topographic wetness index). The PMs explained more than half of the data variance. This performance is similar to (or even better than) that of the conventional soil mapping approach. For some size fractions, the PM performance can reach 70 %. Largest uncertainties were observed in geologically more complex areas. Therefore, significant improvements in the predictions can only be achieved if accurate geological data is made available. Meanwhile, PMs built on terrain attributes are efficient in predicting the particle-size distribution (psd) of soils in regions of complex geology.
Resumo:
Peatlands are soil environments that store carbon and large amounts of water, due to their composition (90 % water), low hydraulic conductivity and a sponge-like behavior. It is estimated that peat bogs cover approximately 4.2 % of the Earth's surface and stock 28.4 % of the soil carbon of the planet. Approximately 612 000 ha of peatlands have been mapped in Brazil, but the peat bogs in the Serra do Espinhaço Meridional (SdEM) were not included. The objective of this study was to map the peat bogs of the northern part of the SdEM and estimate the organic matter pools and water volume they stock. The peat bogs were pre-identified and mapped by GIS and remote sensing techniques, using ArcGIS 9.3, ENVI 4.5 and GPS Track Maker Pro software and the maps validated in the field. Six peat bogs were mapped in detail (1:20,000 and 1:5,000) by transects spaced 100 m and each transect were determined every 20 m, the UTM (Universal Transverse Mercator) coordinates, depth and samples collected for characterization and determination of organic matter, according to the Brazilian System of Soil Classification. In the northern part of SdEM, 14,287.55 ha of peatlands were mapped, distributed over 1,180,109 ha, representing 1.2 % of the total area. These peatlands have an average volume of 170,021,845.00 m³ and stock 6,120,167 t (428.36 t ha-1) of organic matter and 142,138,262 m³ (9,948 m³ ha-1) of water. In the peat bogs of the Serra do Espinhaço Meridional, advanced stages of decomposing (sapric) organic matter predominate, followed by the intermediate stage (hemic). The vertical growth rate of the peatlands ranged between 0.04 and 0.43 mm year-1, while the carbon accumulation rate varied between 6.59 and 37.66 g m-2 year-1. The peat bogs of the SdEM contain the headwaters of important water bodies in the basins of the Jequitinhonha and San Francisco Rivers and store large amounts of organic carbon and water, which is the reason why the protection and preservation of these soil environments is such an urgent and increasing need.
Resumo:
Soil properties have an enormous impact on economic and environmental aspects of agricultural production. Quantitative relationships between soil properties and the factors that influence their variability are the basis of digital soil mapping. The predictive models of soil properties evaluated in this work are statistical (multiple linear regression-MLR) and geostatistical (ordinary kriging and co-kriging). The study was conducted in the municipality of Bom Jardim, RJ, using a soil database with 208 sampling points. Predictive models were evaluated for sand, silt and clay fractions, pH in water and organic carbon at six depths according to the specifications of the consortium of digital soil mapping at the global level (GlobalSoilMap). Continuous covariates and categorical predictors were used and their contributions to the model assessed. Only the environmental covariates elevation, aspect, stream power index (SPI), soil wetness index (SWI), normalized difference vegetation index (NDVI), and b3/b2 band ratio were significantly correlated with soil properties. The predictive models had a mean coefficient of determination of 0.21. Best results were obtained with the geostatistical predictive models, where the highest coefficient of determination 0.43 was associated with sand properties between 60 to 100 cm deep. The use of a sparse data set of soil properties for digital mapping can explain only part of the spatial variation of these properties. The results may be related to the sampling density and the quantity and quality of the environmental covariates and predictive models used.
Resumo:
Soil information is needed for managing the agricultural environment. The aim of this study was to apply artificial neural networks (ANNs) for the prediction of soil classes using orbital remote sensing products, terrain attributes derived from a digital elevation model and local geology information as data sources. This approach to digital soil mapping was evaluated in an area with a high degree of lithologic diversity in the Serra do Mar. The neural network simulator used in this study was JavaNNS and the backpropagation learning algorithm. For soil class prediction, different combinations of the selected discriminant variables were tested: elevation, declivity, aspect, curvature, curvature plan, curvature profile, topographic index, solar radiation, LS topographic factor, local geology information, and clay mineral indices, iron oxides and the normalized difference vegetation index (NDVI) derived from an image of a Landsat-7 Enhanced Thematic Mapper Plus (ETM+) sensor. With the tested sets, best results were obtained when all discriminant variables were associated with geological information (overall accuracy 93.2 - 95.6 %, Kappa index 0.924 - 0.951, for set 13). Excluding the variable profile curvature (set 12), overall accuracy ranged from 93.9 to 95.4 % and the Kappa index from 0.932 to 0.948. The maps based on the neural network classifier were consistent and similar to conventional soil maps drawn for the study area, although with more spatial details. The results show the potential of ANNs for soil class prediction in mountainous areas with lithological diversity.
Resumo:
ABSTRACT In recent years, geotechnologies as remote and proximal sensing and attributes derived from digital terrain elevation models indicated to be very useful for the description of soil variability. However, these information sources are rarely used together. Therefore, a methodology for assessing and specialize soil classes using the information obtained from remote/proximal sensing, GIS and technical knowledge has been applied and evaluated. Two areas of study, in the State of São Paulo, Brazil, totaling approximately 28.000 ha were used for this work. First, in an area (area 1), conventional pedological mapping was done and from the soil classes found patterns were obtained with the following information: a) spectral information (forms of features and absorption intensity of spectral curves with 350 wavelengths -2,500 nm) of soil samples collected at specific points in the area (according to each soil type); b) obtaining equations for determining chemical and physical properties of the soil from the relationship between the results obtained in the laboratory by the conventional method, the levels of chemical and physical attributes with the spectral data; c) supervised classification of Landsat TM 5 images, in order to detect changes in the size of the soil particles (soil texture); d) relationship between classes relief soils and attributes. Subsequently, the obtained patterns were applied in area 2 obtain pedological classification of soils, but in GIS (ArcGIS). Finally, we developed a conventional pedological mapping in area 2 to which was compared with a digital map, ie the one obtained only with pre certain standards. The proposed methodology had a 79 % accuracy in the first categorical level of Soil Classification System, 60 % accuracy in the second category level and became less useful in the categorical level 3 (37 % accuracy).