46 resultados para genetic algorithm-kernel partial least squares
Resumo:
A model based on chemical structure was developed for the accurate prediction of octanol/water partition coefficient (K OW) of polychlorinated biphenyls (PCBs), which are molecules of environmental interest. Partial least squares (PLS) was used to build the regression model. Topological indices were used as molecular descriptors. Variable selection was performed by Hierarchical Cluster Analysis (HCA). In the modeling process, the experimental K OW measured for 30 PCBs by thin-layer chromatography - retention time (TLC-RT) has been used. The developed model (Q² = 0,990 and r² = 0,994) was used to estimate the log K OW values for the 179 PCB congeners whose K OW data have not yet been measured by TLC-RT method. The results showed that topological indices can be very useful to predict the K OW.
Resumo:
Dilutions of methylmetacrylate ranging between 1 and 50 ppm were obtained from a stock solution of 1 ml of monomer in 100 ml of deionised water, and were analyzed by an absorption spectrophotometer in the UV-visible. Absorbance values were used to develop a calibration model based on the PLS, with the aim to determine new sample concentrations. The number of latent variables used was 6, with the standard errors of calibration and prediction found to be 0,048 ml/100 ml and 0,058 ml/100 ml. The calibration model was successfully used to calculate the concentration of monomer released in water, where complete dentures were kept for one hour after polymerization.
Resumo:
In this work, a partial least squares regression routine was used to develop a multivariate calibration model to predict the chemical oxygen demand (COD) in substrates of environmental relevance (paper effluents and landfill leachates) from UV-Vis spectral data. The calibration models permit the fast determination of the COD with typical relative errors lower by 10% with respect to the conventional methodology.
Resumo:
A simple method was proposed for determination of paracetamol and ibuprofen in tablets, based on UV measurements and partial least squares. The procedure was performed at pH 10.5, in the concentration ranges 3.00-15.00 µg ml-1 (paracetamol) and 2.40-12.00 µg ml-1 (ibuprofen). The model was able to predict paracetamol and ibuprofen in synthetic mixtures with root mean squares errors of prediction of 0.12 and 0.17 µg ml-1, respectively. Figures of merit (sensitivity, limit of detection and precision) were also estimated. The results achieved for the determination of these drugs in pharmaceutical formulations were in agreement with label claims and verified by HPLC.
Resumo:
In this work, the artificial neural networks (ANN) and partial least squares (PLS) regression were applied to UV spectral data for quantitative determination of thiamin hydrochloride (VB1), riboflavin phosphate (VB2), pyridoxine hydrochloride (VB6) and nicotinamide (VPP) in pharmaceutical samples. For calibration purposes, commercial samples in 0.2 mol L-1 acetate buffer (pH 4.0) were employed as standards. The concentration ranges used in the calibration step were: 0.1 - 7.5 mg L-1 for VB1, 0.1 - 3.0 mg L-1 for VB2, 0.1 - 3.0 mg L-1 for VB6 and 0.4 - 30.0 mg L-1 for VPP. From the results it is possible to verify that both methods can be successfully applied for these determinations. The similar error values were obtained by using neural network or PLS methods. The proposed methodology is simple, rapid and can be easily used in quality control laboratories.
Determinação de misturas de sulfametoxazol e trimetoprima por espectroscopia eletrônica multivariada
Resumo:
In this work a multivariate spectroscopic methodology is proposed for quantitative determination of sulfamethoxazole and trimethoprim in pharmaceutical associations. The multivariate model was developed by partial least-squares regression, using twenty synthetic mixtures and the spectral region between 190 and 350 nm. In the validation stage, which involved the analysis of five synthetic mixtures, prediction errors lower that 3% were observed. The predictive capacity of the multivariate models is seriously affected by spectral changes induced by pH variations, a fact that acquires a great significance in the analysis of real samples (pharmaceuticals) that contain chemical additives.
Resumo:
Diffuse reflectance near-infrared (DR-NIR) spectroscopy associated with partial least squares (PLS) multivariate calibration is proposed for a direct, non-destructive, determination of total nitrogen in wheat leaves. The procedure was developed for an Analytical Instrumental Analysis course, carried out at the Institute of Chemistry of the State University of Campinas. The DR-NIR results are in good agreement with those obtained by the Kjeldhal standard procedure, with a relative error of less than ± 3% and the method may be used for teaching purposes as well as for routine analysis.
Resumo:
Two spectrophotometric methods are described for the simultaneous determination of ezetimibe (EZE) and simvastatin (SIM) in pharmaceutical preparations. The obtained data was evaluated by using two different chemometric techniques, Principal Component Regression (PCR) and Partial Least-Squares (PLS-1). In these techniques, the concentration data matrix was prepared by using the mixtures containing these drugs in methanol. The absorbance data matrix corresponding to the concentration data matrix was obtained by the measurements of absorbances in the range of 240 - 300 nm in the intervals with Δλ = 1 nm at 61 wavelengths in their zero order spectra, then, calibration or regression was obtained by using the absorbance data matrix and concentration data matrix for the prediction of the unknown concentrations of EZE and SIM in their mixture. The procedure did not require any separation step. The linear range was found to be 5 - 20 µg mL-1 for EZE and SIM in both methods. The accuracy and precision of the methods were assessed. These methods were successfully applied to a pharmaceutical preparation, tablet; and the results were compared with each other.
Resumo:
In this work an analytical methodology for the determination of relevant physicochemical parameters of prato cheese is reported, using infrared spectroscopy (DRIFT) and partial least squares regression (PLS). Several multivariate models were developed, using different spectral regions and preprocessing routines. In general, good precision and accuracy was observed for all studied parameters (fat, protein, moisture, total solids, ashes and pH) with standard deviations comparable with those provided by the conventional methodologies. The implantation of this multivariate routine involves significant analytical advantages, including reduction of cost and time of analysis, minimization of human errors, and elimination of chemical residues.
Resumo:
The main objective of the present work is represented by the characterization of the physical properties of industrial kraft paper (i.e. transversal and longitudinal tear resistance, transversal traction resistance, bursting or crack resistance, longitudinal and transversal compression resistance (SCT (Compressive Strength Tester) and compression resistance (RCT-Ring Crush Test)) by near infrared spectroscopy associated to partial least squares regression. Several multivariate models were developed, many of them with high prevision capacity. In general, low prevision errors were observed and regression coefficients that are comparable with those provided by conventional standard methodologies.
Resumo:
The kinetics of biodegradation by the fungus Ganoderma sp of textile dyes Yellow, Blue and Red Procion were studied in effluents using UV-Vis spectroscopy, Partial Least Squares Regression (PLS) and univariate analysis. The kinetic of the reactions were founded intermediate between first and second orders and the rate constants were calculated. The biodegradation after 72 h at 28 ºC were 33.6, 43.5 and 57.7% for the dyes Yellow, Blue and Red Procion, respectively. The quantitative analysis of the effluent by HPLC method can not be used without previous separation.
Resumo:
A multivariate spectrophotometric method was developed for analysis of kojic acid/hydroquinone associations in skin whitening cosmetics. The method is based on the reaction between kojic acid and Fe3+ and on the reduction of Fe3+ by hydroquinone and further complexation of Fe2+ with 1,10-phenanthroline. The multivariate model was developed by Partial Least Squares Regression (PLSR), using 25 synthetic mixtures and mean-centered spectral data (350-380 nm). The use of 3 (kojic acid) and 2 (hydroquinone) latent variables permits the observation of mean errors of about 5% in the external validation phase.
Resumo:
Direct infusion electrospray ionization mass spectrometry in the negative ion mode, ESI(-)-MS and Fourier transform infrared spectroscopy (FTIR) were used together with partial least squares (PLS) as a tool to determine B3 adulteration (B3 - mixture of 3% v/v of biodiesel in diesel) with kerosene and residual oil.
Resumo:
Mid-infrared spectroscopy and chemometrics were used to identify adulteration in roasted and ground coffee by addition of coffee husks. Consumers' sensory perception of the adulteration was evaluated by a triangular test of the coffee beverages. Samples containing above 0.5% of coffee husks from pure coffees were discriminated by principal component analysis of the infrared spectra. A partial least-squares regression estimated the husk content in samples and presented a root-mean-square error for prediction of 2.0%. The triangular test indicated that were than 10% of coffee husks are required to cause alterations in consumer perception about adulterated beverages.
Resumo:
The aim of this manuscript was to show the basic concepts and practical application of Partial Least Squares (PLS) as a tutorial, using the Matlab computing environment for beginners, undergraduate and graduate students. As a practical example, the determination of the drug paracetamol in commercial tablets using Near-Infrared (NIR) spectroscopy and Partial Least Squares (PLS) regression was shown, an experiment that has been successfully carried out at the Chemical Institute of Campinas State University for chemistry undergraduate course students to introduce the basic concepts of multivariate calibration in a practical way.