42 resultados para free energy simulation


Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work compared activated carbon, activated earth, diatomaceous earth, chitin and chitosan to removal acid blue 9, food yellow 3 and FD&C yellow nº 5 dyes from aqueous solutions with different pH values (2-10). In the best process condition for each dye, equilibrium studies were carried out at different temperatures (from 298 to 328 K) and Langmuir, Freundlich, Redlich-Peterson, Temkin and Dubinin-Radushkevich models were fitted with experimental data. In addition, entropy change, Gibbs free energy change and enthalpy change were obtained in order to verify the thermodynamic adsorption behavior.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The present work deals with the study of the correlation of free-energy developed in a catalytic system for Suzuki coupling, by way of the Hammett equation. The system presents NCP pincer palladacycle 1 as a catalyst precursor, which proved to be very efficient in the coupling of various aryl boronic acids with aryl halides in previous studies. Thus, the article presented here intends to serve as a support for further investigations and clarifications relating to cross-coupling catalytic cycles.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Analytical Chemistry books lack a clear link between thermodynamic and equilibrium approaches involving acids and bases. In this work, theoretical calculations were performed to search for these relations. An excellent relationship was found between difference in Gibbs free energy, ∆G of acid dissociation reaction and ∆G of hydrolysis reaction of the corresponding conjugate base. A relationship between ∆G of hydrolysis reaction of conjugate acids and their corresponding atomic radius was also identified, showing that stability plays an important role in hydrolysis reactions. Finally, the importance of solvation in acid/base behavior was demonstrated when comparing the corresponding theoretical and experimental ∆G´s.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The nutritional and functional benefits offered by whey protein α-lactalbumin justify the great interest in its manufacture in large quantities at a high purity level. Hydroxyapatite is a calcium phosphate material able to adsorb proteins and can be synthesized at low production cost. Therefore, this work evaluated the adsorption of α-lactalbumin on hydroxyapatite using solid-liquid phase equilibrium data reported as adsorption isotherms. Van't Hoff's thermodynamics analysis showed that the adsorption process is entropically driven.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Potential energy surface (PES) of cis-trans and trans-trans formic acid dimers were sampled using a stochastic method, and the geometries, energies, and vibrational frequencies were computed at B3LYP/6-311++G(3df,2p) level of theory. The results show that molar free energy of dimerization deviated up to 108.4% when basis set superposition error (BSSE) and zero-point energy (ZPE) were not considered. For cis-trans dimers, C=O and O - H bond weakened, whereas C - O bonds strengthened due to dimerization. Also, trans-trans FA dimers did not show a trend regarding strengthening or weakening of the C=O, O - H and C - O bonds.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The binding of [RuCl2(L)] (L = N,N-bis(7-methyl-2-pyridylmethylene)-1,3-diiminopropane) to bovine and human serum albumin was investigated by the fluorescence quenching technique. The comparison of the quenching effect of serum albumin fluorescence by ruthenium complex allowed the estimation of subdomain IB in BSA and subdomain IIA in HSA as the binding sites for this complex. The results of fluorescence titration revealed that ruthenium complex quenches the intrinsic fluorescence of BSA through a dynamic quenching mechanism, while HSA has a static quenching mechanism. The thermodynamic parameters indicated that hydrophobic forces played a major role in the binding of ruthenium complex to proteins. The process of binding was a spontaneous process in which Gibbs free energy change was negative.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An interesting practical experiment about the preparation of dye–sensitized solar cells (DSSC) using natural dyes were carried out by the undergraduate students in the chemistry course at UNICAMP . Natural dyes were extracted from blueberries (Vaccinium myrtillus L.), jabuticabas (Myrciaria cauliflora), raw and cooked beets (Beta vulgaris L.), and annattos (Bixa orellana L.), which were used to sensitize TiO2 films that composed the photoanode in the DSSC. A polymer electrolyte containing an iodide/triiodide redox couple was used in lieu of the use of liquid solutions to prevent any leakage in the devices. A maximum solar-to-electric energy conversion of 0.26 ± 0.02% was obtained for the solar cell prepared with annatto extracts. This experiment was an effective way to illustrate to the undergraduate students how to apply some of the chemical concepts that they learned during their chemistry course to produce electric energy from a clean and renewable energy source. Teachers could also exploit the basics of the electronic transitions in inorganic and organic compounds (e.g., metal-to-ligand charge transfer and ϖ-ϖ* transitions), thermodynamics (e.g., Gibbs free energy), acid–base reactions in the oxide solid surface and electrolyte, and band theory (i.e., the importance of the Fermi level energy).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Extinction coefficients (e) changes of manganese phthalocyanine (Mn-Pc) were studied in different organic solvents and related to solvent polarity scales; (Kosower's values (Z), Dimroth's values (E T), donor numbers (DN) and linear solvation energy relationships (LSER) or linear free energy relationships (LFER));, theoretical molecular orbital calculations and ligand/solvent coordination processes in order to predict molecular interaction with the medium and identification of predominant intermolecular forces.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Voltammetric technique was used to study the binary and ternary complexes of cadmium with L-amino acids and vitamin-C (L-ascorbic acid) at pH =7.30 ± 0.01, µ = 1.0M KNO3 at 25ºC and 35ºC. Cd (II) formed 1:1:1, 1:1:2 and 1:2:1 complexes with L-lysine, L-ornithine, L-threonine, L-serine, L-phenylglycine, L-phenylalanine, L-glutamic acid and L-aspartic acid used as primary ligands and L-ascorbic acid used as secondary ligand. The trend of stability constant of complexes was L-lysine < L-ornithine < L-threonine < L-serine < L-phenylglycine < L-phenylalanine < L-glutamic acid < L-aspartic acid which can be explained on the basis of size, basicity and steric hindrance of ligands. The values of stability constant (log β) varied from 2.23 to11.33 confirm that these drugs i.e. L-amino acids or in combination with L-ascorbic acid or their complexes could be used against Cd (II) toxicity. The study has been carried out at 35ºC also to determine the thermodynamic parameters such as enthalpy change (ΔH), Free energy change (ΔG) and entropy change (ΔS) respectively.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper gives a detailed presentation of the Substitution-Newton-Raphson method, suitable for large sparse non-linear systems. It combines the Successive Substitution method and the Newton-Raphson method in such way as to take the best advantages of both, keeping the convergence features of the Newton-Raphson with the low requirements of memory and time of the Successive Substitution schemes. The large system is solved employing few effective variables, using the greatest possible part of the model equations in substitution fashion to fix the remaining variables, but maintaining the convergence characteristics of the Newton-Raphson. The methodology is exemplified through a simple algebraic system, and applied to a simple thermodynamic, mechanical and heat transfer modeling of a single-stage vapor compression refrigeration system. Three distinct approaches for reproducing the thermodynamic properties of the refrigerant R-134a are compared: the linear interpolation from tabulated data, the use of polynomial fitted curves and the use of functions derived from the Helmholtz free energy.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The stabilizing free energy of ß-trypsin was determined by hydrogen ion titration. In the pH range from 3.0 to 7.0, the change in free energy difference for the stabilization of the native protein relative to the unfolded one (D D G0 titration) was 9.51 ± 0.06 kcal/mol. An isoelectric point of 10.0 was determined, allowing us to calculate the Tanford and Kirkwood electrostatic factor w. This factor presented a nonlinear behavior and indicated more than one type of titratable carboxyl groups in ß-trypsin. In fact, one class of carboxyl group with a pK = 3.91 ± 0.01 and another one with a pK = 4.63 ± 0.03 were also found by hydrogen ion titration of the protein in the folded state

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The equilibrium unfolding of bovine trypsinogen was studied by circular dichroism, differential spectra and size exclusion HPLC. The change in free energy of denaturation was = 6.99 ± 1.40 kcal/mol for guanidine hydrochloride and = 6.37 ± 0.57 kcal/mol for urea. Satisfactory fits of equilibrium unfolding transitions required a three-state model involving an intermediate in addition to the native and unfolded forms. Size exclusion HPLC allowed the detection of an intermediate population of trypsinogen whose Stokes radii varied from 24.1 ± 0.4 Å to 26.0 ± 0.3 Å for 1.5 M and 2.5 M guanidine hydrochloride, respectively. During urea denaturation, the range of Stokes radii varied from 23.9 ± 0.3 Å to 25.7 ± 0.6 Å for 4.0 M and 6.0 M urea, respectively. Maximal intrinsic fluorescence was observed at about 3.8 M urea with 8-aniline-1-naphthalene sulfonate (ANS) binding. These experimental data indicate that the unfolding of bovine trypsinogen is not a simple transition and suggest that the equilibrium intermediate population comprises one intermediate that may be characterized as a molten globule. To obtain further insight by studying intermediates representing different stages of unfolding, we hope to gain a better understanding of the complex interrelations between protein conformation and energetics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The manner by which effects of simultaneous mutations combine to change enzymatic activity is not easily predictable because these effects are not always additive in a linear manner. Hence, the characterization of the effects of simultaneous mutations of amino acid residues that bind the substrate can make a significant contribution to the understanding of the substrate specificity of enzymes. In the β-glycosidase from Spodoptera frugiperda (Sfβgly), both residues Q39 and E451 interact with the substrate and this is essential for defining substrate specificity. Double mutants of Sfβgly (A451E39, S451E39 and S451N39) were prepared by site-directed mutagenesis, expressed in bacteria and purified using affinity chromatography. These enzymes were characterized using p-nitrophenyl β-galactoside and p-nitrophenyl β-fucoside as substrates. The k cat/Km ratio for single and double mutants of Sfβgly containing site-directed mutations at positions Q39 and E451 was used to demonstrate that the effect on the free energy of ES‡ (enzyme-transition state complex) of the double mutations (∆∆G‡xy) is not the sum of the effects resulting from the single mutations (∆∆G‡x and ∆∆G‡y). This difference in ∆∆G‡ indicates that the effects of the single mutations partially overlap. Hence, this common effect counts only once in ∆∆G‡xy. Crystallographic data on β-glycosidases reveal the presence of a bidentate hydrogen bond involving residues Q39 and E451 and the same hydroxyl group of the substrate. Therefore, both thermodynamic and crystallographic data suggest that residues Q39 and E451 exert a mutual influence on their respective interactions with the substrate.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Jackfruit tree is one of the most significant trees in tropical home gardens and perhaps the most widespread and useful tree in the important genus Artocarpus. The fruit is susceptible to mechanical and biological damage in the mature state, and some people find the aroma of the fruit objectionable, particularly in confined spaces. The dehydration process could be an alternative for the exploitation of this product, and the relationship between moisture content and water activity provides useful information for its processing and storage. The aim of this study was to determine the thermodynamic properties of the water sorption of jackfruit (Artocarpus heterophyllus Lam.) as a function of moisture content. Desorption isotherms of the different parts of the jackfruit (pulp, peduncle, mesocarp, peel, and seed) were determined at four different temperatures (313.15, 323.15, 333.15, and 343.15 K) in a water activity range of 0.02-0.753 using the static gravimetric method. Theoretical and empirical models were used to model the desorption isotherms. An analytical solution of the Clausius-Clapeyron equation was proposed to calculate the isosteric heat of sorption, the differential entropy, and Gibbs' free energy using the Guggenhein-Anderson-de Boer and Oswin models considering the effect of temperature on the hygroscopic equilibrium.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The hydration kinetics of five barley cultivars was studied at six different temperatures ranging from 10 to 35 ºC for 32 hours applying the Peleg model. Response Surface was used to describe dynamic of the process and identify the hydration time for each cultivar. The activation energy (Ea), enthalpy (ΔH*), entropy (ΔS*), and Gibbs free energy (ΔG*) were estimated from the adjusted parameters and Arrhenius equation. Temperature had significant effect on the hydration of the five cultivars. At low temperatures, the stabilization time for hydration was faster. Peleg constants K1 and K2 decreased with increasing temperature. The cultivar BRS BRAU showed the lowest value of initial absorption rate (R0 = 0.149 kg.h-1) at 10 ºC, while the cultivar BRS BOREMA had the highest value of R0 (0.367 kg.h-1 at 35 ºC). The equilibrium moisture content (Me) increased with increasing temperature. The cultivars BRS CAUE and BRS BRAU showed the lowest values of Ea, ΔH*, ΔS* showed negative values, and ΔG* increased with increasing temperature, confirming the effect of temperature on hydration.