142 resultados para field capacity


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The spatial correlation between soil properties and weeds is relevant in agronomic and environmental terms. The analysis of this correlation is crucial for the interpretation of its meaning, for influencing factors such as dispersal mechanisms, seed production and survival, and the range of influence of soil management techniques. This study aimed to evaluate the spatial correlation between the physical properties of soil and weeds in no-tillage (NT) and conventional tillage (CT) systems. The following physical properties of soil and weeds were analyzed: soil bulk density, macroporosity, microporosity, total porosity, aeration capacity of soil matrix, soil water content at field capacity, weed shoot biomass, weed density, Commelina benghalensis density, and Bidens pilosa density. Generally, the ranges of the spatial correlations were higher in NT than in CT. The cross-variograms showed that many variables have a structure of combined spatial variation and can therefore be mapped from one another by co-kriging. This combined variation also allows inferences about the physical and biological meanings of the study variables. Results also showed that soil management systems influence the spatial dependence structure significantly.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

As opposed to objective definitions in soil physics, the subjective term “soil physical quality” is increasingly found in publications in the soil physics area. A supposed indicator of soil physical quality that has been the focus of attention, especially in the Brazilian literature, is the Least Limiting Water Range (RLL), translated in Portuguese as "Intervalo Hídrico Ótimo" or IHO. In this paper the four limiting water contents that define RLLare discussed in the light of objectively determinable soil physical properties, pointing to inconsistencies in the RLLdefinition and calculation. It also discusses the interpretation of RLL as an indicator of crop productivity or soil physical quality, showing its inability to consider common phenological and pedological boundary conditions. It is shown that so-called “critical densities” found by the RLL through a commonly applied calculation method are questionable. Considering the availability of robust models for agronomy, ecology, hydrology, meteorology and other related areas, the attractiveness of RLL as an indicator to Brazilian soil physicists is not related to its (never proven) effectiveness, but rather to the simplicity with which it is dealt. Determining the respective limiting contents in a simplified manner, relegating the study or concern on the actual functioning of the system to a lower priority, goes against scientific construction and systemic understanding. This study suggests a realignment of the research in soil physics in Brazil with scientific precepts, towards mechanistic soil physics, to replace the currently predominant search for empirical correlations below the state of the art of soil physics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The State of Santa Catarina, Brazil, has agricultural and livestock activities, such as pig farming, that are responsible for adding large amounts of phosphorus (P) to soils. However, a method is required to evaluate the environmental risk of these high soil P levels. One possible method for evaluating the environmental risk of P fertilization, whether organic or mineral, is to establish threshold levels of soil available P, measured by Mehlich-1 extractions, below which there is not a high risk of P transfer from the soil to surface waters. However, the Mehlich-1 extractant is sensitive to soil clay content, and that factor should be considered when establishing such P-thresholds. The objective of this study was to determine P-thresholds using the Mehlich-1 extractant for soils with different clay contents in the State of Santa Catarina, Brazil. Soil from the B-horizon of an Oxisol with 800 g kg-1 clay was mixed with different amounts of sand to prepare artificial soils with 200, 400, 600, and 800 g kg-1 clay. The artificial soils were incubated for 30 days with moisture content at 80 % of field capacity to stabilize their physicochemical properties, followed by additional incubation for 30 days after liming to raise the pH(H2O) to 6.0. Soil P sorption curves were produced, and the maximum sorption (Pmax) was determined using the Langmuir model for each soil texture evaluated. Based on the Pmax values, seven rates of P were added to four replicates of each soil, and incubated for 20 days more. Following incubation, available P contents (P-Mehlich-1) and P dissolved in the soil solution (P-water) were determined. A change-point value (the P-Mehlich-1 value above which P-water starts increasing sharply) was calculated through the use of segmented equations. The maximum level of P that a soil might safely adsorb (P-threshold) was defined as 80 % of the change-point value to maintain a margin for environmental safety. The P-threshold value, in mg dm-3, was dependent on the soil clay content according to the model P-threshold = 40 + Clay, where the soil clay content is expressed as a percentage. The model was tested in 82 diverse soil samples from the State of Santa Catarina and was able to distinguish samples with high and low environmental risk.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

ABSTRACT The combustion of rice husk generates a partially burnt mixture called rice husk ash (RHA) that can be used as a source of nutrients to crops and as a conditioner of soil physical properties. The objective of this study was to evaluate the effect of RHA levels on the hydro-physical properties of a Typic Hapludult. The experimental design was composed of random blocks with four replications, which comprised plots of 24 m2 and treatments with increasing RHA rates: 0, 40, 80 and 120 Mg ha-1. Undisturbed soil samples were collected in the soil layers of 0.00-0.10 and 0.10-0.20 m after nine months of RHA application, using steel cylinders (0.03 m of height and 0.047 m of diameter). These samples were used to determine soil bulk density (Bd), total soil porosity (TP), soil macroporosity (Ma), soil microporosity (Mi) and the available water capacity (AWC). Disturbed soil samples were collected to determine the stability of soil aggregates in water, mean weight diameter of water stable aggregates (MWD), and soil particle size distribution. The results show that, as the RHA rate increased in the soil, Bd values decreased and TP, Ma and MWD values increased. No effect of RHA was found on Mi and AWC values. The effects of RHA on the S parameter (Dexter, 2004), precompression stress and compression index (Dias Junior and Pierce, 1995) values are consistent those shown for density and total porosity. Rice husk ash was shown to be an efficient residue to improve soil physical properties, mainly at rates between 40 and 80 Mg ha-1. Rice husk ash reduces bulk density and increases total porosity, macroporosity and soil aggregation, but does not affect microporosity, field capacity, permanent wilting point, and available water capacity of the soil. The effect of rice husk ash on the S parameter, precompression stress and index compressibility coefficient values are consistent with those observed for the bulk density and total porosity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

ABSTRACT Understanding the spatial behavior of soil physical properties under no-tillage system (NT) is required for the adoption and maintenance of a sustainable soil management system. The aims of this study were to quantify soil bulk density (BD), porosity in the soil macropore domain (PORp) and in the soil matrix domain (PORm), air capacity in the soil matrix (ACm), field capacity (FC), and soil water storage capacity (FC/TP) in the row (R), interrow (IR), and intermediate position between R and IR (designated IP) in the 0.0-0.10 and 0.10-0.20 m soil layers under NT; and to verify if these soil properties have systematic variation in sampling positions related to rows and interrows of corn. Soil sampling was carried out in transect perpendicular to the corn rows in which 40 sampling points were selected at each position (R, IR, IP) and in each soil layer, obtaining undisturbed samples to determine the aforementioned soil physical properties. The influence of sampling position on systematic variation of soil physical properties was evaluated by spectral analysis. In the 0.0-0.1 m layer, tilling the crop rows at the time of planting led to differences in BD, PORp, ACm, FC and FC/TP only in the R position. In the R position, the FC/TP ratio was considered close to ideal (0.66), indicating good water and air availability at this sampling position. The R position also showed BD values lower than the critical bulk density that restricts root growth, suggesting good soil physical conditions for seed germination and plant establishment. Spectral analysis indicated that there was systematic variation in soil physical properties evaluated in the 0.0-0.1 m layer, except for PORm. These results indicated that the soil physical properties evaluated in the 0.0-0.1 m layer were associated with soil position in the rows and interrows of corn. Thus, proper assessment of soil physical properties under NT must take into consideration the sampling positions and previous location of crop rows and interrows.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The objective of this work was to evaluate the effect of moisture and temperature on the development of Sclerotium rolfsii on soybean, corn, and wheat straw. Wheat straw produced the lowest number of sclerotia. Intermediate soil moisture level (70% of field capacity), and temperatures ranging between 25-30ºC favored sclerotia development. No sclerotia were formed at temperatures between 30-35ºC, on any type of straw.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this research, was used four papaya (Carica papaya L.) genotypes: three from the 'Solo ( Sunrise Solo TJ, Sunrise Solo 72/12 and Baixinho de Santa Amália) group and one from the 'Formosa' group (Know-You 01). They were grown in plastic pots containing a sandy-clay-loam soil subjected to pH correction and fertilization, under greenhouse conditions. Throughout the experimental period plants were subjected to periodic irrigation to maintain the soil humitidy around field capacity. The experiment was conducted 73 days after sowing. In all genotypes, leaf gas exchange characteristics were determined. The net photosynthetic rate (A, mumol m-2 s-1 ), stomatal conductance (g s mol m-2 s-1), leaf temperature (T I, 0C) and intercellular carbon dioxide concentration (ci, muL L-1) on the 4th, 5th, 6th, 7th, 8th and 9th leaves from the plant apex were determined. No significant differences were observed for A, g s, c i, or Tl either among the leaves sampled from any of the genotypes. A was positively correlated with g s and in the other hand T I and g s were negatively correlated. The results suggest that, for 73 DAP, all the sampled papaya leaves functioned as sources of organs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The irrigation management based on the monitoring of the soil water content allows for the minimization of the amount of water applied, making its use more efficient. Taking into account these aspects, in this work, a sensor for measuring the soil water content was developed to allow real time automation of irrigation systems. This way, problems affecting crop yielding such as irregularities in the time to turn on or turn off the pump, and excess or deficit of water can be solved. To develop the sensors were used stainless steel rods, resin, and insulating varnish. The sensors measuring circuit was based on a microcontroller, which gives its output signal in the digital format. The sensors were calibrated using soil of the type “Quartzarenic Neosoil”. A third order polynomial model was fitted to the experimental data between the values of water content corresponding to the field capacity and the wilting point to correlate the soil water content obtained by the oven standard method with those measured by the electronic circuit, with a coefficient of determination of 93.17%, and an accuracy in the measures of ±0.010 kg kg-1. Based on the results, it was concluded that the sensor and its implemented measuring circuit can be used in the automation process of irrigation systems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study aimed to test controlled levels of water deficiency in soil in mango trees, under microsprinkling irrigation, in semi-arid conditions, and to evaluate its effect in the productivity and fruits quality. The deficits were applied in the phases I, II and III of growth of the fruit, during the productive cycles of the mango tree in 2006 and 2007. The experiment in both cases was arranged in an entirely random design with 10 treatments and 3 repetitions, in the year I, and with 8 treatments and 3 repetitions in the year II. The values of soil water potential, of the treatments submitted to regulated deficit irrigation (RDI), were placed in the range of 0 to -0.011 MPa, showing that the soil humidity varied between the saturation and the field capacity, not characterizing deficit water condition. The average values of stem water potential (Ψstem) varied between -0.90 and -1.74 MPa, evidencing significant effect (p <0.05) just for T1 (without irrigation), T7 and T8 (RDI with 30% of the ETc in the phases II and III, respectively). Through the variance analysis, significant differences were not verified among productivity, number of fruits per plant and size of the fruit, in none of the experiments, what indicates the possibility of reduction of the water use in the irrigation of the mango tree without significant losses of productivity and fruit quality.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Irrigation management can be established, considering the soil water potential, as the limiting factor for plant growth, assuming the soil water content between the field capacity and the permanent wilting point as available water for crops. Thus, the aim of this study was to establish the soil water potential interval during four different phenological phases of coffee irrigated by center pivot. The experiment was set at the experimental area of the Engineering Department at the Federal University of Lavras, in Brazil. The coffee variety planted is designated as Rubi, planted 0.8 meters apart, with rows spaced 3.5 meters apart. The treatments corresponded to the water depths applied based on different percentages of Kc and reference evapotranspiration (ET0) values. Sensors were used to measure the soil water potential interval, installed 25 centimeters depth. In order to compare the results, it was considered as the best matric potential the one that was balanced with the soil water content that resulted in the largest coffee productivity. Based on the obtained results, we verified that in the phases of fruit expansion and ripening, the best results were obtained, before the irrigations, when the soil water potential values reached -35 and -38 kPa, respectively. And in the flowering, small green and fruit expansion phases, when the values reached -31 and -32 kPa, respectively.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This experiment was conducted in Lavras - state of Minas Gerais (MG), Brazil, in a protected environment, and aims to estimate the irrigation depths that maximize productivity and economic returns in the cultivation of asparagus bean and analyze the economic viability of irrigation management. The experimental delineation was randomized blocks with five treatments and four replications. The treatments consisted of five drip irrigation depths: 40, 70, 100, 130 and 160% of water replacement depth up to field capacity. The depths of water that maximize productivity and economic returns were obtained from the regression model adjusted to productivity data, cost of product relations and water cost. The economic viability was achieved on the benefit/cost ratio basis. The depth with the maximum economic return was estimated in 434.4mm, with a productivity of 35,160.6kg ha-1, which is economically viable for the cultivation of asparagus bean, with a expected profitability of R$ 1.70 for every real invested.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The destruction of the cotton crop residues (cotton stalks) is a mandatory procedure in Brazil for prophylactic issues, but is a subject unexplored by the research and there are few studies that deal with this issue. However, this is not encouraged in recent decades, studies aimed at developing and evaluating equipment for this purpose. The present study had the objective to evaluate six methods for mechanical destruction of cotton crop residues. Each method was defined based on the principle of operation of the active parts of the equipment, which were tested in medium texture soil and in a clayey one. The variables used to evaluate the efficiency of the equipment were the regrowth rate, the theoretical field capacity and energy demand. The equipment with convergent concave disks (DCC) and flat cutters discs from manufacturer A (CPS-a) showed the best results in cotton stalks destruction in both soil types. The harrow disc (GPD) was efficient only in clay soil. It was concluded that the equipment with convergent concave disks, among those tested, was the most efficient to destroy cotton stalks, regardless of soil type, and that the harrow disc was not included among the best performers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Frequent traffic of tractors in agricultural soils, promotes soil compaction and affects the flow and water availability. The aim of this research was to study the effect of compaction induced by tractor traffic on water availability in the soil under different traffic intensities on the same path (0, 1, 3, 6 and 10 passages), to two tractors with 3.3 and 2.6 ton of weights, over three different surface conditions. The study was conducted in an Andisol, representative soil of the study area. It was determined the behavior of the water retention curve, obtaining the gravitational water, available water and hygroscopic water, to 10 and 30 cm of depth. The hygroscopic water is the most prevalent with values ​​of up to 80% of the total water present in the soil. The water retention curves showed increases in the values ​​of field capacity and wilting point and behaviors "flattened" indicating a high sensitivity to the applied treatments, representative of compacted soils, which give the surfaces studied characteristics do not suitable for normal crop development.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study aimed at assessing the level of weed infestation indifferent areas that were submitted to different soil management for 16 years. Four management systems were studied: (1) agriculture only under conventional tillage system; (2) agriculture only under no-till system; (3) crop-livestock integrationcrop-livestock integration; (4) livestock only. These areas were sampled at three soil depths (0-5, 5-10 and 10-15 cm), and soil was stored in plastic pots and taken to a greenhouse, where soil moisture and weight were standardized. Soil was kept near 70% moisture field capacity, being revolved every 20 days when all seedling emerged from soil were counted, identified and collected for dry mass assessment. The soil coverage by weeds, number of weed seedlings and dry mass of the weedy community were assessed. A phytoecological analysis was conducted. Weed composition is differentdifferent among management systems after 16 years. Areas with livestock showed much smaller number of weed species in comparison to systems where only grain crops are grown. The presence of livestock affects the potential of germination of soil seed bank. Agriculture systems are similar in terms of weed composition along soil profile, while systems involving livestock show little relation in what regards such sampled depths. Conservationist models of land exploration contribute to reduce severity of weed species occurrence in the long term.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Trianthema portulacastrum is a very problematic summer crop weed and a complete crop failure has been observed because of this weed at high density. The effect of different ecological factors on germination of T. portulacastrum seeds collected in two different years (2009 and 2005) was studied in laboratory experiments. An increase in temperature from 25 to 35 ºC increased germination percentage of T. portulacastrum from 65 to 85%, after which germination started to decrease, reducing to 71.25% at 45 ºC. Trianthema portulacastrum had maximum germination with distilled water compared with different salt solutions and drought stress levels. Germination was significantly minimum at salinity and drought stress level of 250 mM and -0.8 MPa, respectively. Emergence of T. portulacastrum was maximum (86.25%) at 100% field capacity level but decreased sharply as field capacity decreased thereafter, and minimum emergence (30%) was recorded at field capacity level of 25%. Germination of T. portulacastrum was lowest at pH 5 and any increase in pH resulted in increased germination. A pH range of 8 to 10 had statistically similar germination. Sowing depth of 6 cm reduced the emergence of T. portulacastrum to zero. Reduction in emergence was recorded with depth increase from zero to 5 cm. Maximum emergence was recorded from soil surface (0 cm). An increase in temperature, salinity, drought, sowing depth (up to 4 cm) and a decrease in field capacity increased time to start germination/emergence, time to 50% germination/emergence and mean germination/emergence time but decreased germination/emergence index. Seeds collected during 2009 gave higher germination than old seeds collected in 2005. This information might contribute to development of effective control of T. portulacastrum.