24 resultados para evolutionary transitions
Resumo:
Flowers of Annonaceae are characterized by fleshy petals, many stamens with hard connective shields and numerous carpels with sessile stigmas often covered by sticky secretions. The petals of many representatives during anthesis form a closed pollination chamber. Protogynous dichogamy with strong scent emissions especially during the pistillate stage is a character of nearly all species. Scent emissions can be enhanced by thermogenesis. The prevailing reproductive system in the family seems to be self-compatibility. The basal genus Anaxagorea besides exhibiting several ancestral morphological characters has also many characters which reappear in other genera. Strong fruit-like scents consisting of fruit-esters and alcohols mainly attract small fruit-beetles (genus Colopterus, Nitidulidae) as pollinators, as well as several other beetles (Curculionidae, Chrysomelidae) and fruit-flies (Drosophilidae), which themselves gnaw on the thick petals or their larvae are petal or ovule predators. The flowers and the thick petals are thus a floral brood substrate for the visitors and the thick petals of Anaxagorea have to be interpreted as an antipredator structure. Another function of the closed thick petals is the production of heat by accumulated starch, which enhances scent emission and provides a warm shelter for the attracted beetles. Insight into floral characters and floral ecology of Anaxagorea, the sister group of the rest of the Annonaceae, is particularly important for understanding functional evolution and diversification of the family as a whole. As beetle pollination (cantharophily) is plesiomorphic in Anaxagorea and in Annonaceae, characters associated with beetle pollination appear imprinted in members of the whole family. Pollination by beetles (cantharophily) is the predominant mode of the majority of species worldwide. Examples are given of diurnal representatives (e.g., Guatteria, Duguetia, Annona) which function on the basis of fruit-imitating flowers attracting mainly fruit-inhabiting nitidulid beetles, as well as nocturnal species (e.g., large-flowered Annona and Duguetia species), which additionally to most of the diurnal species exhibit strong flower warming and provide very thick petal tissues for the voracious dynastid scarab beetles (Dynastinae, Scarabaeidae). Further examples will show that a few Annonaceae have adapted in their pollination also to thrips, flies, cockroaches and even bees. Although this non-beetle pollinated species have adapted in flower structure and scent compounds to their respective insects, they still retain some of the specialized cantharophilous characters of their ancestors.
Resumo:
In this article we review some of the basic aspects of rare earth spectroscopy applied to vitreous materials. The characteristics of the intra-atomic free ion and ligand field interactions, as well as the formalisms of the forced electric dipole and dynamic coupling mechanisms of 4f-4f intensities, are outlined. The contribution of the later mechanism to the 4f-4f intensities is critically discussed, a point that has been commonly overlooked in the literature of rare earth doped glasses. The observed correlation between the empirical intensity parameter W2 and the covalence of the ion first coordination shell is discussed accordingly to the theoretical predictions.
Resumo:
The chemical indexes, suggested by Gottlieb et al., have not been used before regarding evolutionary tendency of species in the Swartzia genus. However, the importance of this work encouraged for an analysis of the Swartzia genus using the metabolites isolated from nine species. The analysis, based on calculated chemical indexes, provided an evolutionary tendency for these plants, which correlates with the classification based on morphological analysis.
Resumo:
Thermal stability and thermal decomposition of succinic acid, sodium succinate and its compounds with Mn(II), Fe(II), Co(II), Ni(II), Cu(II) and Zn(II) were investigated employing simultaneous thermogravimetry and differential thermal analysis (TG-DTA) in nitrogen and carbon dioxide atmospheres and TG-FTIR in nitrogen atmosphere. On heating, in both atmospheres the succinic acid melt and evaporate, while for the sodium succinate the thermal decomposition occurs with the formation of sodium carbonate. For the transition metal succinates the final residue up to 1180 ºC in N2 atmosphere was a mixture of metal and metal oxide in no simple stoichiometric relation, except for Zn compound, where the residue was a small quantity of carbonaceous residue. For the CO2 atmosphere the final residue up to 980 ºC was: MnO, Fe3O4, CoO, ZnO and mixtures of Ni, NiO and Cu, Cu2O.
Resumo:
The results of a numerical study of premixed Hydrogen-air flows ignition by an oblique shock wave (OSW) stabilized by a wedge are presented, in situations when initial and boundary conditions are such that transition between the initial OSW and an oblique detonation wave (ODW) is observed. More precisely, the objectives of the paper are: (i) to identify the different possible structures of the transition region that exist between the initial OSW and the resulting ODW and (ii) to evidence the effect on the ODW of an abrupt decrease of the wedge angle in such a way that the final part of the wedge surface becomes parallel to the initial flow. For such a geometrical configuration and for the initial and boundary conditions considered, the overdriven detonation supported by the initial wedge angle is found to relax towards a Chapman-Jouguet detonation in the region where the wedge surface is parallel to the initial flow. Computations are performed using an adaptive, unstructured grid, finite volume computer code previously developed for the sake of the computations of high speed, compressible flows of reactive gas mixtures. Physico-chemical properties are functions of the local mixture composition, temperature and pressure, and they are computed using the CHEMKIN-II subroutines.
Resumo:
In the last few years, hydrostatic pressure has been extensively used in the study of both protein folding and misfolding/aggregation. Compared to other chemical or physical denaturing agents, a unique feature of pressure is its ability to induce subtle changes in protein conformation, which allow the stabilization of partially folded intermediate states that are usually not significantly populated under more drastic conditions (e.g., in the presence of chemical denaturants or at high temperatures). Much of the recent research in the field of protein folding has focused on the characterization of folding intermediates since these species appear to be involved in a variety of disease-causing protein misfolding and aggregation events. The exact mechanisms of these biologicalphenomena, however, are still poorly understood. Here, we review recent examples of the use of hydrostatic pressure as a tool to obtain insight into the forces and energetics governing the productive folding or the misfolding and aggregation of proteins.
Resumo:
Pressure-driven and temperature-driven transitions of two thermoresponsive polymers, poly(N-isopropylacrylamide) (pNIPAM) and poly(N-vinylisobutyramide) (pNVIBA)), in both a soluble linear polymer form and a cross-linked hydro-gel form, were examined by a dynamic light-scattering method and direct microscopic observation, respectively. Their behavior was compared with that of protein systems. Changes in some characteristic parameters in the time-intensity correlation functions of dynamic light-scattering measurement of aqueous solutions of pNIPAM at various pressures and temperatures showed no essential differences during temperature and pressure scanning and, as a whole, the motions of polymers in aqueous solutions were similar in two types of transitions until chain shrinkage occurred. The gels (cross-linked polymer gels) prepared from the thermoresponsive polymers also showed similar volume transitions responding to the pressure and temperature increase. In temperature transitions, however, gels showed drastic volume shrinkage with loss of transparency, while pressure-induced transition showed a slow recovery of transparency while keeping the size, after first transient drastic volume shrinkage with loss of transparency. At a temperature slightly higher than the transition under atmospheric temperature, so-called reentry of the volume change and recovery of the transparency were observed during the pressure-increasing process, which implies much smaller aggregation or non-aggregated collapsed polymer chains in the gel at higher pressures, indicating a certain mechanistic difference of the dehydration processes induced by temperature and pressure.
Resumo:
The aim of this work was to study the effect of the hydrolysis degree (HD) and the concentration (C PVA) of two types of poly (vinyl alcohol) (PVA) and the effect of the type and the concentration of plasticizers on the phase properties of biodegradable films based on blends of gelatin and PVA, using a response-surface methodology. The films were made by casting and the studied properties were their glass (Tg) and melting (Tm) transition temperatures, which were determined by diferential scanning calorimetry (DSC). For the data obtained on the first scan, the fitting of the linear model was statistically significant and predictive only for the second melting temperature. In this case, the most important effect on the second Tm of the first scan was due to the HD of the PVA. In relation to the second scan, the linear model could be fit to Tg data with only two statistically significant parameters. Both the PVA and plasticizer concentrations had an important effect on Tg. Concerning the second Tm of the second scan, the linear model was fit to data with two statistically significant parameters, namely the HD and the plasticizer concentration. But, the most important effect was provoked by the HD of the PVA.