19 resultados para ethics of technological development
Resumo:
Gene therapy is the treatment of diseases based on the transfer of genetic information. Agents that carry or deliver DNA to target cells are called vectors (Latin vector: carrier, deliverer). Ideally, a vector should accommodate an unlimited amount of inserted DNA, lack the ability of autonomous replication of its own DNA, be easily manufactured, and be available in concentrated form. Secondly, it should have the ability to target specific cell types or to limit its gene expression to specific cell types, and to achieve sustained gene expression in the long term or in a controlled fashion. Finally, it should not be toxic or immunogenic. Such a vector does not exist and none of the DNA delivery systems so far available for in vivo gene transfer is perfect with respect to any of these points. Gene therapy and the means to promote it depend heavily on the development and improvement of new gene vector systems.
Resumo:
Male sex determination in humans is controlled by the SRY gene, which encodes a transcriptional regulator containing a conserved high mobility group box domain (HMG-box) required for DNA binding. Mutations in the SRY HMG-box affect protein function, causing sex reversal phenotypes. In the present study, we describe a 19-year-old female presenting 46,XY karyotype with hypogonadism and primary amenorrhea that led to the diagnosis of 46,XY complete gonadal dysgenesis. The novel p.E89K missense mutation in the SRY HMG-box was identified as a de novo mutation. Electrophoretic mobility shift assays showed that p.E89K almost completely abolished SRY DNA-binding activity, suggesting that it is the cause of SRY function impairment. In addition, we report the occurrence of the p.G95R mutation in a 46,XY female with complete gonadal dysgenesis. According to the three-dimensional structure of the human SRY HMG-box, the substitution of the conserved glutamic acid residue by the basic lysine at position 89 introduces an extra positive charge adjacent to and between the positively charged residues R86 and K92, important for stabilizing the HMG-box helix 2 with DNA. Thus, we propose that an electrostatic repulsion caused by the proximity of these positive charges could destabilize the tip of helix 2, abrogating DNA interaction.
Resumo:
We studied the effects of the acute administration of small doses of lead over time on hemodynamic parameters in anesthetized rats to determine if myocardial contractility changes are dependent or not on the development of hypertension. Male Wistar rats received 320 µg/kg lead acetateiv once, and their hemodynamic parameters were measured for 2 h. Cardiac contractility was evaluated in vitro using left ventricular papillary muscles as were Na+,K+-ATPase and myosin Ca2+-ATPase activities. Lead increased left- (control: 112 ± 3.7 vs lead: 129 ± 3.2 mmHg) and right-ventricular systolic pressures (control: 28 ± 1.2vs lead: 34 ± 1.2 mmHg) significantly without modifying heart rate. Papillary muscles were exposed to 8 µM lead acetate and evaluated 60 min later. Isometric contractions increased (control: 0.546 ± 0.07 vs lead: 0.608 ± 0.06 g/mg) and time to peak tension decreased (control: 268 ± 13vs lead: 227 ± 5.58 ms), but relaxation time was unchanged. Post-pause potentiation was similar between groups (n = 6 per group), suggesting no change in sarcoplasmic reticulum activity, evaluated indirectly by this protocol. After 1-h exposure to lead acetate, the papillary muscles became hyperactive in response to a β-adrenergic agonist (10 µM isoproterenol). In addition, post-rest contractions decreased, suggesting a reduction in sarcolemmal calcium influx. The heart samples treated with 8 µM lead acetate presented increased Na+,K+-ATPase (approximately 140%, P < 0.05 for control vs lead) and myosin ATPase (approximately 30%, P < 0.05 for control vs lead) activity. Our results indicated that acute exposure to low lead concentrations produces direct positive inotropic and lusitropic effects on myocardial contractility and increases the right and left ventricular systolic pressure, thus potentially contributing to the early development of hypertension.
Resumo:
In consequence of several studies and speculations concerning the issue of RR transgenic soybean after the application of glyphosate, additional scientific investigations became necessary to clarify the actual viability of the product use when applied in different developmental stages of the soybean crop. Therefore, this study was aimed to evaluate the physiological quality as well as seed health quality of RR soybean subjected to application of the herbicide glyphosate in different phonological stages of the transgenic soybean, cultivar CD 219RR. For this, an experiment with a complete block experimental design with treatments randomly distributed within the block, with four replications, was carried out. The assessed treatments were foliar sprayings of glyphosate in three increasing dosages [0 (control); 1,440 g ha-1; and 2,880 g ha-1] of acid equivalent, applied in two crop developmental stages: vegetative (V6) and reproductive (R2). The variables assessed were: germination; first count of germination; fresh and dry mass of seedlings, lengths of seedling and root; vigor and viability by the tetrazolium test; and seed health quality. Glyphosate application may adversely affect physiological quality of RR soybean seeds, when applied in dosages varying from 1,440 to 2,880 g acid equivalent per hectare at the stages V6 and R2.