410 resultados para espectrometria por absorção atômica
Resumo:
This is a review of direct analysis using solid sampling graphite furnace atomic absorption spectrometry. Greater emphasis is dedicated to sample preparation, sample homogeneity, calibration and its application to microanalysis and micro-homogeneity studies. The main advantages and some difficulties related to the applicability of this technique are discussed. A literature search on the application of solid sampling graphite furnace atomic absorption spectrometry in trace element determination in many kinds of samples, including biological, clinical, technological and environmental ones, is also presented.
Resumo:
This paper reports the development of a methodology for simultaneously determining As, Cd and Pb, employing GF AAS with polarized Zeeman-effect background correction. In order to make the procedure applicable, the influence of pyrolysis and atomization temperatures and the amount of chemical modifiers were studied. Factorial and central composite designs were used to optimize these variables. Precision and accuracy of the method were investigated using Natural Water Reference material, Nist SRM 1640. Results are in agreement with certified values at the 95% confidence limit when the Student t-test is used. This methodology was used for quality control of purified water for hemodialysis.
Resumo:
This paper present an overview of way covered for the spectrometry of atomic absorption (AAS), tracing a line of the historical events in its development and its establishment as a multielement technique. Additionally, the efforts carried by through several researchers in the search for the instrumental evolution, the advances, advantages, limitations, and trends of this approach are related. Several works focusing its analytical applications are cited employing simultaneous multielement determination by flame (FAAS) and/or graphite furnace (GF AAS), and fast sequential multielement determination using FAAS are reported in the present review.
Resumo:
This work describes methods for the simultaneous determination of Cd and Pb by graphite furnace atomic absorption spectrometry and As by hydride generation atomic absorption spectrometry in Brazilian nuts. The samples (~ 0.300 g) were digested to clear solutions in a closed vessel microwave oven. The pyrolysis and atomization temperatures for simultaneous determinations of Cd and Pb were 1100 and 2100 °C, respectively, using 0.5% (w v-1) NH4H2PO4 + 0.03% (w v-1) Mg(NO3)2 as chemical modifier. The limits of detection (3Δ) were 3.8 μg kg-1 for As, 0.86 μg kg-1 for Cd and 13 μg kg-1 for Pb. The reliability of the entire procedures was confirmed by peach leaves (No. 1547 - NIST) certified reference material analysis and addition and recovery tests. The found concentrations presented no statistical differences at the 95% confidence level.
Resumo:
This work proposes an analytical procedure for direct determination of calcium, magnesium, manganese and zinc in buffalo milk by flame atomic absorption spectrometry (FAAS). Samples were diluted with a solution containing 10% (v/v) of water-soluble tertiary amines (CFA-C) at pH 8. For comparison, buffalo milk samples were digested with HNO3 and H2O2. According to a paired t-test, the results obtained in the determination of Ca, Mg, Mn and Zn in digested samples and in 10% (v/v) CFA-C medium were in agreement at a 95% confidence level. The developed procedure is simple, rapid, decrease the possibility of contamination and can be applied for the routine determination of Ca, Mg, Mn and Zn in buffalo milk samples without any difficulty caused by matrix constituents, such as fat content, and particle size distribution in the milk emulsion.
Resumo:
Mercury is a toxic metal used in a variety of substances over the course history. One of its more dubious uses is in dental amalgam restorations. It is possible to measure very small concentrations of this metal in the urine of exposed subjects by the cold vapor atomic absorption technique. The present work features the validation as an essential tool to confirm the suitability of the analytical method chosen to accomplish such determination. An initial analysis will be carried out in order to evaluate the environmental and occupational levels of exposure to mercury in 39 members of the auxiliary dental staff at public consulting rooms in the city of Araguaína (TO).
Resumo:
Chicken meat is largely consumed in human nutrition and it is produced in extremely large scale in some countries, including Brazil. In this work graphite furnace atomic absorption spectrometry was used for determination of arsenic in chicken and chicken production-related samples. These samples were digested employing a microwave-assisted procedure in closed vessels using a 7 mol L-1 nitric acid solution plus concentrated hydrogen peroxide. The concentration range of total As determined in chicken production-related samples varied from 1.30 to 29.8 mg kg-1 of As. The detection and quantification limits reached were 0.055 and 0.182 mg kg-1, respectively (n = 15).
Resumo:
Levels of Ca, Mg, Fe, Zn, Cu and Mn were determinated by FAAS in the tea and dry matter from senescent leaf from Montrichardia linifera, plant used in folk medicine Amazon. The content of these metals that are transferred of the leaf to the infusions have presented significant reductions, however, the Mn values in the infusion may exceed the tolerable daily intake (11 mg) if consumption of this tea is greater than 1.0 L per day. So the tea of senescent leaves of M. linifera may be considered as a toxic beverage and thus its use is not advised.
Resumo:
This paper describes the development of methods for the determination of Pb and Mn in fishes by GF AAS after solubilization with tetramethylamonium hidroxide. The optimization of the operational conditions and the choice of modifier were made using multivariated optimization. Analytical Figures of Merit were adequately to propose. The Limit of Quantification obtained were 150 and 18.5 µg kg-1 to Mn and Pb, respectively. No significant difference was found between the slope values obtained for the aqueous and standard addition calibration curves. The D.P.R. was always lower than 12% and the analysis of the SRM NRCC TORT2 showed 80-120% of recovery.
Resumo:
In this study, a method for determination of hexavalent chromium in aqueous samples using liquid-liquid microextraction (LLME) and detection by Flame Atomic Absorption Spectrometry (F AAS) was developed. The LLME procedure was based on the extraction of Cr (VI) by acetone at a sample pH of 1.2. The use of saturated ammonium sulphate solution allowed effective separation of the aqueous and organic phases and acetone extracted chromium. The sample pH, acetone volume and stirring time were optimized by a full factorial design.
Resumo:
Simple and sensitive procedures for the extraction/preconcentration of molybdenum based on vortex-assisted solidified floating organic drop microextraction (VA-SFODME) and cloud point combined with flame absorption atomic spectrometry (FAAS) and discrete nebulization were developed. The influence of the discrete nebulization on the sensitivity of the molybdenum preconcentration processes was studied. An injection volume of 200 µL resulted in a lower relative standard deviation with both preconcentration procedures. Enrichment factors of 31 and 67 and limits of detection of 25 and 5 µg L-1 were obtained for cloud point and VA-SFODME, respectively. The developed procedures were applied to the determination of Mo in mineral water and multivitamin samples.
Resumo:
This aim of this work was to compare two methods for copper determination in insulating oils from power transformers by GFAAS. The first method was extraction induced by emulsion breaking, which determined the preconcentration of copper in an aqueous solution and exhibited a limit of quantification of 0.27 µg L-1. Also, a second method based on the direct introduction of samples into GFAAS in the form of detergent emulsions, prepared with Triton X-114 and HNO3, was investigated. In this case, the limit of quantification was 1.7 µg L-1. Seven samples of used oils were successfully analyzed by both methods.
Resumo:
Este trabalho descreve uma revisão a respeito do emprego da técnica de espectrometria de absorção atômica simultânea em forno de grafite (SIMAAS) em determinações multielementares de elementos-traço em diferentes matrizes. Os principais parâmetros envolvidos e que devem ser considerados em medidas multielementares, tais como, fonte de radiação, geometria do forno, programa de aquecimento e natureza e quantidade de modificador químico, são descritos.
Resumo:
A influência de digeridos e suspensões de açúcar no comportamento térmico de As usando Pd(NO3)2, Pd(NO3)2 + Mg(NO3)2, and Ni(NO3)2 como modificadores químicos foi investigada. Influência de 0,2%, 5%, 10% e 35% (v/v) HNO3 na calibração (1,00 - 10,0 µg As L-1) também foi feita. Um volume de 20 µL de amostra mais 5 µL Pd ou 5 µL Pd + 3 µL Mg, ou 20 µL Ni foi injetado no atomizador do GF AAS. Para cada modificador, temperaturas de pirólise e atomização foram avaliadas por meio de curvas de pirólise e de atomização, respectivamente. Para suspensão de açúcar, temperaturas de pirólise e atomização (Tp, Ta) obtidas foram: sem modificador (400° C, 2000° C); Pd (1400° C, 2200° C); Pd/Mg (1400° C, 2200° C) e Ni (1600° C, 2200° C). Os valores para digeridos de açúcar foram: sem modificador (400° C, 2200° C); Pd (1400° C, 2200° C); Pd/Mg (1400° C, 2200° C) e Ni (600° C, 2200° C). Paládio foi selecionado como o melhor modificador químico. O tempo de vida do tubo de grafte foi de aproximadamente 350 queimas, o RSD (n = 12) para uma amostra típica contendo 5,52 µg As L-1 foi < 2,2% e o limite de detecção foi 2,4 pg As. Recuperações entre 80 e 92% foram encontradas.
Resumo:
Este trabalho propõe um método simples, rápido e confiável para determinação direta e simultânea de Al, As, Fe, Mn e Ni em cachaça por espectrometria de absorção atômica em forno de grafite (GFAAS). A superfície superior da plataforma do tubo de grafite foi revestida com filme à base de tungstênio (WxCyOz).O programa de aquecimento otimizado (temperatura, tempo de rampa, tempo de patamar) foi o seguinte: secagem 1 (100ºC, 5 s, 5 s); secagem 2 (120ºC, 5 s, 5 s); pirólise (1300ºC, 10 s, 30 s); atomização (2200ºC, 1 s, 6 s) e limpeza (2550ºC, 1 s, 3s). Os desvios padrões relativos (n=3) foram < 4,4%, < 0,7%, < 11%, < 6,0%, < 1,2% para os elementos Al, As, Fe, Mn e Ni, respectivamente. A exatidão foi avaliada por meio de testes de adição e recuperação dos analitos em 8 amostras de cachaças comerciais, e as recuperações situaram-se nos seguintes intervalos: 80 - 105% (Al), 81 - 92% (As), 82 - 108% (Fe), 83 - 106% (Mn), 83 - 108% (Ni). Os limites de detecção calculados foram 9,7 µg L-1 Al, 2,3 µg L-1 As, 12 µg L-1 Fe, 14 µg L-1 Mn e 0,8 µg L-1 Ni.