47 resultados para epilepsy, hippocampus, dopamine, methylxanthines, GABA


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of acute (120 mg/kg) and chronic (25 mg/kg, twice a day, for 4 days) intraperitonial injection of the nitric oxide (NO) synthase (NOS) inhibitor NG-nitro-L-arginine (L-NOARG) was evaluated on seizure induction by drugs such as pilocarpine and pentylenetetrazole (PTZ) and by sound stimulation of audiogenic seizure-resistant (R) and audiogenic seizure-susceptible (S) rats. Seizures were elicited by a subconvulsant dose of pilocarpine (100 mg/kg) only after NOS inhibition. NOS inhibition also simultaneously potentiated the severity of PTZ-induced limbic seizures (60 mg/kg) and protected against PTZ-induced tonic seizures (80 mg/kg). The audiogenic seizure susceptibility of S or R rats did not change after similar treatments. In conclusion, proconvulsant effects of NOS inhibition are suggested to occur in the pilocarpine model and in the limbic components of PTZ-induced seizures, while an anticonvulsant role is suggested for the tonic seizures induced by higher doses of PTZ, revealing inhibitor-specific interactions with convulsant dose and also confirming the hypothesis that the effects of NOS inhibitors vary with the model of seizure

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diethylpropion (DEP) is an amphetamine-like agent used as an anorectic drug. Abuse of DEP has been reported and some restrictions of its use have been recently imposed. The conditioning place preference (CPP) paradigm was used to evaluate the reinforcing properties of DEP in adult male Wistar rats. After initial preferences were determined, animals weighing 250-300 g (N = 7 per group) were conditioned with DEP (10, 15 or 20 mg/kg). Only the dose of 15 mg/kg produced a significant place preference (358 ± 39 vs 565 ± 48 s). Pretreatment with the D1 antagonist SCH 23390 (0.05 mg/kg, sc) 10 min before DEP (15 mg/kg, ip) blocked DEP-induced CPP (418 ± 37 vs 389 ± 31 s) while haloperidol (0.5 mg/kg, ip), a D2 antagonist, 15 min before DEP was ineffective in modifying place conditioning produced by DEP (385 ± 36 vs 536 ± 41 s). These results suggest that dopamine D1 receptors mediate the reinforcing effect of DEP

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Theta rhythm in many brain structures characterizes wakefulness and desynchronized sleep in most subprimate mammalian brains. In close relation to behaviors, theta frequency and voltage undergo a fine modulation which may involve mobilization of dorsal raphe nucleus efferent pathways. In the present study we analyzed frequency modulation (through instantaneous frequency variation) of theta waves occurring in three cortical areas, in hippocampal CA1 and in the dorsal raphe nucleus of Wistar rats during normal wakefulness and after injection of the 5-HT1a receptor agonist 8-OH-DPAT into the dorsal raphe. We demonstrated that in attentive states the variation of theta frequency among the above structures is highly congruent, whereas after 8-OH-DPAT injection, although regular signals are present, the variation is much more complex and shows no relation to behaviors. Such functional uncoupling after blockade demonstrates the influence of dorsal raphe nucleus efferent serotoninergic fibers on the organization of alertness, as evaluated by electro-oscillographic analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated the effects of hippocampal lesions with ibotenic acid (IBO) on the memory of the sound-context-shock association during reexposure to the conditioning context. Twenty-nine adult pigeons were assigned to a non-lesioned control group (CG, N = 7), a sham-lesioned group (SG, N = 7), a hippocampus-lesioned experimental group (EG, N = 7), and to an unpaired nonlesioned group (tone-alone exposure) (NG, N = 8). All pigeons were submitted to a 20-min session in the conditioning chamber with three associations of sound (1000 Hz, 85 dB, 1 s) and shock (10 mA, 1 s). Experimental and sham lesions were performed 24 h later (EG and SG) when EG birds received three bilateral injections (anteroposterior (A), 4.5, 5.25 and 7.0) of IBO (1 µl and 1 µg/µl) and SG received one bilateral injection (A, 5.25) of PBS. The animals were reexposed to the training context 5 days after the lesion. Behavior was videotaped for 20 min and analyzed at 30-s intervals. A significantly higher percent rating of immobility was observed for CG (median, 95.1; range, 79.2 to 100.0) and SG (median, 90.0; range, 69.6 to 95.0) compared to EG (median, 11.62; range, 3.83 to 50.1) and NG (median, 7.33; range, 6.2 to 28.1) (P<0.001) in the training context. These results suggest impairment of contextual fear in birds who received lesions one day after conditioning and a role for the hippocampus in the modulation of emotional aversive memories in pigeons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glutamate receptors have been implicated in memory formation. The aim of the present study was to determine the effect of inhibitory avoidance training on specific [3H]-glutamate binding to membranes obtained from the hippocampus or parietal cortex of rats. Adult male Wistar rats were trained (0.5-mA footshock) in a step-down inhibitory avoidance task and were sacrificed 0, 5, 15 or 60 min after training. Hippocampus and parietal cortex were dissected and membranes were prepared and incubated with 350 nM [3H]-glutamate (N = 4-6 per group). Inhibitory avoidance training induced a 29% increase in glutamate binding in hippocampal membranes obtained from rats sacrificed at 5 min (P<0.01), but not at 0, 15, or 60 min after training, and did not affect glutamate binding in membranes obtained from the parietal cortex. These results are consistent with previous evidence for the involvement of glutamatergic synaptic modification in the hippocampus in the early steps of memory formation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of the present study was to determine if phenobarbital affects the nociception threshold. Systemic (1-20 mg/kg) phenobarbital administration dose dependently induced hyperalgesia in the tail-flick, hot-plate and formalin tests in rats and in the abdominal constriction test in mice. Formalin and abdominal constriction tests were the most sensitive procedures for the detection of hyperalgesia in response to phenobarbital compared with the tail-flick and hot-plate tests. The hyperalgesia induced by systemic phenobarbital was blocked by previous administration of 1 mg/kg ip picrotoxin or either 1-2 mg/kg sc or 10 ng icv bicuculline. Intracerebroventricular phenobarbital administration (5 µg) induced hyperalgesia in the tail-flick test. In contrast, intrathecal phenobarbital administration (5 µg) induced antinociception and blocked systemic-induced hyperalgesia in this test. We suggest that phenobarbital may mediate hyperalgesia through GABA-A receptors at supraspinal levels and antinociception through the same kind of receptors at spinal levels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, the behavioral and electroencephalographic (EEG) analysis of seizures induced by the intrahippocampal injection in rats of granulitoxin, a neurotoxic peptide from the sea anemone Bunodosoma granulifera, was determined. The first alterations occurred during microinjection of granulitoxin (8 µg) into the dorsal hippocampus and consisted of seizure activity that began in the hippocampus and spread rapidly to the occipital cortex. This activity lasted 20-30 s, and during this period the rats presented immobility. During the first 40-50 min after its administration, three to four other similar short EEG seizure periods occurred and the rats presented the following behavioral alterations: akinesia, facial automatisms, head tremor, salivation, rearing, jumping, barrel-rolling, wet dog shakes and forelimb clonic movements. Within 40-50 min, the status epilepticus was established and lasted 8-12 h. These results are similar to those observed in the acute phase of the pilocarpine model of temporal lobe epilepsy and suggest that granulitoxin may be a useful tool not only to study the sodium channels, but also to develop a new experimental model of status epilepticus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The interactions between the median raphe nucleus (MRN) serotonergic system and the septohippocampal muscarinic cholinergic system in the modulation of immediate working memory storage performance were investigated. Rats with sham or ibotenic acid lesions of the MRN were bilaterally implanted with cannulae in the dentate gyrus of the hippocampus and tested in a light/dark step-through inhibitory avoidance task in which response latency to enter the dark compartment immediately after the shock served as a measure of immediate working memory storage. MRN lesion per se did not alter response latency. Post-training intrahippocampal scopolamine infusion (2 and 4 µg/side) produced a more marked reduction in response latencies in the lesioned animals compared to the sham-lesioned rats. Results suggest that the immediate working memory storage performance is modulated by synergistic interactions between serotonergic projections of the MRN and the muscarinic cholinergic system of the hippocampus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The rostral ventrolateral medulla (RVLM) contains neurons involved in tonic and reflex control of arterial pressure. We describe the effects of gamma-aminobutyric acid (GABA) and anesthetics injected into the RVLM of conscious and urethane (1.2 g/kg, iv) anesthetized Wistar rats (300-350 g). In conscious rats, bilateral microinjection of GABA (50 nmol/200 nl) induced a small but significant decrease in blood pressure (from 130 ± 3.6 to 110 ± 5.6 mmHg, N = 7). A similar response was observed with sodium pentobarbital microinjection (24 nmol/200 nl). However, in the same animals, the fall in blood pressure induced by GABA (from 121 ± 8.9 to 76 ± 8.8 mmHg, N = 7) or pentobarbital (from 118 ± 4.5 to 57 ± 11.3 mmHg, N = 6) was significantly increased after urethane anesthesia. In contrast, there was no difference between conscious (from 117 ± 4.1 to 92 ± 5.9 mmHg, N = 7) and anesthetized rats (from 123 ± 6.9 to 87 ± 8.7 mmHg, N = 7) when lidocaine (34 nmol/200 nl) was microinjected into the RVLM. The heart rate variations were not consistent and only eventually reached significance in conscious or anesthetized rats. The right position of pipettes was confirmed by histology and glutamate microinjection into the RVLM. These findings suggest that in conscious animals the RVLM, in association with the other sympathetic premotor neurons, is responsible for the maintenance of sympathetic vasomotor tone during bilateral RVLM inhibition. Activity of one or more of these premotor neurons outside the RVLM can compensate for the effects of RVLM inhibition. In addition, the effects of lidocaine suggest that fibers passing through the RVLM are involved in the maintenance of blood pressure in conscious animals during RVLM inhibition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Administration of pilocarpine causes epilepsy in rats if status epilepticus (SE) is induced at an early age. To determine in detail the electrophysiological patterns of the epileptogenic activity in these animals, 46 Wistar rats, 7-17 days old, were subjected to SE induced by pilocarpine and electro-oscillograms from the cortex, hippocampus, amygdala, thalamus and hypothalamus, as well as head, rostrum and vibrissa, eye, ear and forelimb movements, were recorded 120 days later. Six control animals of the same age range did not show any signs of epilepsy. In all the rats subjected to SE, iterative spike-wave complexes (8.1 ± 0.5 Hz in frequency, 18.9 ± 9.1 s in duration) were recorded from the frontal cortex during absence fits. However, similar spike-wave discharges were always found also in the hippocampus and, less frequently, in the amygdala and in thalamic nuclei. Repetitive or single spikes were also detected in these same central structures. Clonic movements and single jerks were recorded from all the rats, either concomitantly with or independently of the spike-wave complexes and spikes. We conclude that rats made epileptic with pilocarpine develop absence seizures also occurring during paradoxical sleep, showing the characteristic spike-wave bursts in neocortical areas and also in the hippocampus. This is in contrast to the well-accepted statement that one of the main characteristics of absence-like fits in the rat is that spike-wave discharges are never recorded from the hippocampal fields.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Increased dopamine catabolism may be associated with oxidative stress and neuronal cell death in Parkinson's disease. The present study was carried out to examine the effect of dopamine on the expression of heme oxygenase-1 and -2 (HO-1 and HO-2) in human neuroblastomas (SK-N-SH cell line) and the effects of selegiline and antioxidants on this expression. Cells were kept with close control of pH and were incubated with varying concentrations of dopamine (0.1-100 µM) for 24 h. HO-1 and HO-2 cDNA probes were prepared by reverse transcription-polymerase chain reaction amplification. The mRNA expression of HO-1 and HO-2 was measured by Northern blot analysis. The levels of HO-1 mRNA increased after dopamine treatment, in a dose-dependent manner, in all cell lines studied, whereas levels of the two HO-2 transcripts did not. The HO-1 and HO-2 protein expression was analyzed by Western blotting. HO-1 protein was undetectable in untreated SK-N-SH cells and increased after treatment with dopamine. In contrast, the HO-2 protein (36 kDa) was detected in untreated cells and the levels did not change as a result of treatment. alpha-Tocopherol (10-100 µM) and ascorbic acid (100 µM) did not attenuate the effects of dopamine. Selegiline (10 µM) produced significant increase (P < 0.01) in the induction of HO-1 by dopamine (more than six times the control values). The increased expression of HO-1 following dopamine treatment indicates that dopamine produces oxidative stress in this cell line.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dipyrone administered intravenously (iv) or intracerebroventricularly (icv) delays gastric emptying (GE) in rats. Gamma-aminobutyric acid (GABA) is the most potent inhibitory neurotransmitter of the central nervous system. The objective of the present study was to determine the effect of icv baclofen, a GABA B receptor agonist, on delayed GE induced by dipyrone. Adult male Wistar rats received a saline test meal containing phenol red as a marker. GE was indirectly evaluated by determining the percent of gastric retention (%GR) of the meal 10 min after orogastric administration. In the first experiment, the animals were injected iv with vehicle (Civ) or 80 mg/kg (240 µmol/kg) dipyrone (Dp iv), followed by icv injection of 10 µl vehicle (bac0), or 0.5 (bac0.5), 1 (bac1) or 2 µg (bac2) baclofen. In the second experiment, the animals were injected icv with 5 µl vehicle (Cicv) or an equal volume of a solution containing 4 µmol (1333.2 µg) dipyrone (Dp icv), followed by 5 µl vehicle (bac0) or 1 µg baclofen (bac1). GE was determined 10 min after icv injection. There was no significant difference between control animals from one experiment to another concerning GR values. Baclofen at the doses of 1 and 2 µg significantly reduced mean %GR induced by iv dipyrone (Dp iv bac1 = 35.9% and Dp iv bac2 = 26.9% vs Dp iv bac0 = 51.8%). Similarly, baclofen significantly reduced the effect of dipyrone injected icv (mean %GR: Dp icv bac1 = 30.4% vs Dp icv bac0 = 54.2%). The present results suggest that dipyrone induces delayed GE through a route in the central nervous system that is blocked by the activation of GABA B receptors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phytotherapies have offered alternative sources of therapy for migraine and gained much importance in prophylactic treatment. Sapindus trifoliatus is a medium-sized deciduous tree growing wild in south India that belongs to the family Sapindaceae. The pericarp is reported for various medicinal properties. A thick aqueous solution of the pericarp is used for the treatment of hemicrania, hysteria or epilepsy in folklore medicine. We have investigated the antihyperalgesic effects of the lyophilized aqueous extract of S. trifoliatus in animal models predictive of experimental migraine models using morphine withdrawal-induced hyperalgesia on the hot-plate test and on 0.3% acetic acid-induced abdominal constrictions in adult male Swiss albino mice. The extract significantly (N = 10, P < 0.05) increased the licking latency in the hot-plate test when administered ip at 10 mg/kg (6.70 ± 0.39 s in saline control vs 18.76 ± 0.96 s in S. trifoliatus-treated animals) and significantly (N = 10, P < 0.001) reduced the abdominal constrictions when administered ip at 2 and 10 mg/kg (40.20 ± 1.36 in saline control vs 30.20 ± 1.33 and 23.00 ± 0.98 for 2 and 10 mg/kg, ip, respectively, in S. trifoliatus-treated animals). Furthermore, when administered ip at 20 and 100 mg/kg, the extract significantly (N = 10, P < 0.05) inhibited the apomorphine-induced climbing behavior in mice (climbing duration 15.75 ± 5.0 min for saline control vs 11.4 ± 1.28 and 3.9 ± 1.71 min for 20 and 100 mg/kg, respectively, in S. trifoliatus-treated animals). In receptor radioligand-binding studies, the extract exhibited affinity towards D2 receptors. The findings suggest that dopamine D2 antagonism could be the mechanism involved in the antihyperalgesic activity of the aqueous extract of S. trifoliatus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated the effects of bilateral injections of the GABA receptor agonists muscimol (GABA A) and baclofen (GABA B) into the nucleus tractus solitarius (NTS) on the bradycardia and hypotension induced by iv serotonin injections (5-HT, 2 µg/rat) in awake male Holtzman rats. 5-HT was injected in rats with stainless steel cannulas implanted bilaterally in the NTS, before and 5, 15, and 60 min after bilateral injections of muscimol or baclofen into the NTS. The responses to 5-HT were tested before and after the injection of atropine methyl bromide. Muscimol (50 pmol/50 nl, N = 8) into the NTS increased basal mean arterial pressure (MAP) from 115 ± 4 to 144 ± 6 mmHg, did not change basal heart rate (HR) and reduced the bradycardia (-40 ± 14 and -73 ± 26 bpm at 5 and 15 min, respectively, vs -180 ± 20 bpm for the control) and hypotension (-11 ± 4 and -14 ± 4 mmHg, vs -40 ± 9 mmHg for the control) elicited by 5-HT. Baclofen (12.5 pmol/50 nl, N = 7) into the NTS also increased basal MAP, but did not change basal HR, bradycardia or hypotension in response to 5-HT injections. Atropine methyl bromide (1 mg/kg body weight) injected iv reduced the bradycardic and hypotensive responses to 5-HT injections. The stimulation of GABA A receptors in the NTS of awake rats elicits a significant increase in basal MAP and decreases the cardiac Bezold-Jarisch reflex responses to iv 5-HT injections.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Both the peripheral sympatho-adrenomedullary and central catecholaminergic systems are activated by various psycho-social and physical stressors. Catecholamine stores in the hypothalamus, hippocampus, adrenal glands, and heart auricles of long-term socially isolated (21 days) and control 3-month-old male Wistar rats, as well as their response to immobilization of all 4 limbs and head fixed for 2 h and cold stress (4ºC, 2 h), were studied. A simultaneous single isotope radioenzymatic assay based on the conversion of catecholamines to the corresponding O-methylated derivatives by catechol-O-methyl-transferase in the presence of S-adenosyl-l-(³H-methyl)-methionine was used. The O-methylated derivatives were oxidized to ³H-vanilline and the radioactivity measured. Social isolation produced depletion of hypothalamic norepinephrine (about 18%) and hippocampal dopamine (about 20%) stores and no changes in peripheral tissues. Immobilization decreased catecholamine stores (approximately 39%) in central and peripheral tissues of control animals. However, in socially isolated rats, these reductions were observed only in the hippocampus and peripheral tissues. Cold did not affect hypothalamic catecholamine stores but reduced hippocampal dopamine (about 20%) as well as norepinephrine stores in peripheral tissues both in control and socially isolated rats, while epinephrine levels were unchanged. Thus, immobilization was more efficient in reducing catecholamine stores in control and chronically isolated rats compared to cold stress. The differences in rearing conditions appear to influence the response of adult animals to additional stress. In addition, the influence of previous exposure to a stressor on catecholaminergic activity in the brainstem depends on both the particular catecholaminergic area studied and the properties of additional acute stress. Therefore, the sensitivity of the catecholaminergic system to habituation appears to be tissue-specific.