32 resultados para electronic transitions
Resumo:
Rare earth ion doped solid state materials are the most important active media of near-infrared and visible lasers and other photonic devices. In these ions, the occurrence of Excited State Absorptions (ESA), from long lived electronic levels, is commonplace. Since ESA can deeply affect the efficiencies of the rare earth emissions, evaluation of these transitions cross sections is of greatest importance in predicting the potential applications of a given material. In this paper a detailed description of the pump-probe technique for ESA measurements is presented, with a review of several examples of applications in Nd3+, Tm3+ and Er3+ doped materials.
Resumo:
The excitation energy transfer between chlorophylls in major and minor antenna complexes of photosystem II (PSII) was investigated using quantum Fourier transforms. These transforms have an important role in the efficiency of quantum algorithms of quantum computers. The equation 2n=N was used to make the connection between excitation energy transfers using quantum Fourier transform, where n is the number of qubits required for simulation of transfers and N is the number of chlorophylls in the antenna complexes.
Resumo:
(E)-2-{[(2-Aminopyridin-3-yl)imino]-methyl}-4,6-di-tert-butyl-phenol ( 3: ), a ligand containing an intramolecular hydrogen bond, was prepared according to a previous literature report, with modifications, and was characterized by UV-vis, FTIR, ¹H-NMR, 13C-NMR, HHCOSY, TOCSY and cyclic voltammetry. Computational analyses at the level of DFT and TD-DFT were performed to study its electronic and molecular structures. The results of these analyses elucidated the behaviors of the UV-vis and electrochemical data. Analysis of the transitions in the computed spectrum showed that the most important band is primarily composed of a HOMO→LUMO transition, designated as an intraligand (IL) charge transfer.
Resumo:
On the basis of theoretical B3LYP calculations, Yáñez and co-workers (J. Chem. Theory Comput. 2012, 8, 2293) illustrated that beryllium ions are capable of significantly modulating (changing) the electronic structures of imidazole. In this computational organic chemistry study, the interaction of this β-amino acid and five model Lewis acids (BeF1+, Be2+, AlF2(1+), AlF2+, and Al3+) were investigated. Several aspects were addressed: natural bond orbitals, including second order perturbation analysis of intra-molecular charge delocalization and the natural population analysis atomic charges; molecular geometries; selected infrared stretching frequencies (C-N, C-O, and N-H), and selected ¹H-NMR chemical shifts. The data illustrate that this interaction can weaken the H-O bond and goes beyond strengthening the intra-molecular hydrogen bond (N...H-O) to cause a spontaneous transfer of the proton to the nitrogen atom in five cases generating zwitterion structures. Many new features are observed. Most importantly, the zwitterion structures include a stabilizing hydrogen bond (N-H...O) that varies in relative strength according to the Lewis acid. These findings explain the experimental observations of α-amino acids (for example: J. Am. Chem. Soc. 2001, 123, 3577) and are the first reported fundamental electronic structure characterization of β-amino acids in zwitterion form.
Resumo:
Mülliken charges on nitrogen atoms were calculated for several arylamines, utilizing the AM1 Quantum Chemistry method, relating their values to experimental amine pKa . Direct relation between pKa and nitrogen charges was found. The amines energies of protonation, calculated by the same method, also correlate directly with these charges.
Resumo:
The structural and electronic properties of 1-(5-Hydroxymethyl - 4 -[ 5 - (5-oxo-5-piperidin- 1 -yl-penta- 1,3 -dienyl)-benzo [1,3] dioxol- 2 -yl]-tetrahydro -furan-2 -yl)-5-methy l-1Hpyrimidine-2,4dione (AHE) molecule have been investigated theoretically by performing density functional theory (DFT), and semi empirical molecular orbital calculations. The geometry of the molecule is optimized at the level of Austin Model 1 (AM1), and the electronic properties and relative energies of the molecules have been calculated by density functional theory in the ground state. The resultant dipole moment of the AHE molecule is about 2.6 and 2.3 Debyes by AM1 and DFT methods respectively, This property of AHE makes it an active molecule with its environment, that is AHE molecule may interacts with its environment strongly in solution.
Resumo:
A quantitative analysis is made on the correlation ship of thermodynamic property, i.e., standard enthalpy of formation (ΔH fº) with Kier's molecular connectivity index(¹Xv),vander waal's volume (Vw) electrotopological state index (E) and refractotopological state index (R) in gaseous state of alkanes. The regression analysis reveals a significant linear correlation of standard enthalpy of formation (ΔH fº) with ¹Xv, Vw, E and R. The equations obtained by regression analysis may be used to estimate standard enthalpy of formation (ΔH fº) of alkanes in gaseous state.
Resumo:
Thermal stability and thermal decomposition of succinic acid, sodium succinate and its compounds with Mn(II), Fe(II), Co(II), Ni(II), Cu(II) and Zn(II) were investigated employing simultaneous thermogravimetry and differential thermal analysis (TG-DTA) in nitrogen and carbon dioxide atmospheres and TG-FTIR in nitrogen atmosphere. On heating, in both atmospheres the succinic acid melt and evaporate, while for the sodium succinate the thermal decomposition occurs with the formation of sodium carbonate. For the transition metal succinates the final residue up to 1180 ºC in N2 atmosphere was a mixture of metal and metal oxide in no simple stoichiometric relation, except for Zn compound, where the residue was a small quantity of carbonaceous residue. For the CO2 atmosphere the final residue up to 980 ºC was: MnO, Fe3O4, CoO, ZnO and mixtures of Ni, NiO and Cu, Cu2O.
Resumo:
The aim of this study was to develop a an automated bench top electronic penetrometer (ABEP) that allows performing tests with high rate of data acquisition (up to 19,600 Hz) and with variation of the displacement velocity and of the base area of cone penetration. The mechanical components of the ABEP are: a supporting structure, stepper motor, velocity reducer, double nut ball screw and six penetration probes. The electronic components of ABEP are: a "driver" to control rotation and displacement, power supply, three load cells, two software programs for running and storing data, and a data acquisition module. This penetrometer presented in compact size, portable and in 32 validation tests it proved easy to operate, and showed high resolution, high velocity in reliability in data collection. During the validation tests the equipment met the objectives, because the test results showed that the ABEP could use different sizes of cones, allowed work at different velocities, showed for velocity and displacement, were only 1.3% and 0.7%, respectively, at the highest velocity (30 mm s-1) and 1% and 0.9%, respectively for the lowest velocity (0.1 mm s-1).
Resumo:
This paper describes an electronic transducer for multiphase flow measurement. Its high sensitivity, good signal to noise ratio and accuracy are achieved through an electrical impedance sensor with a special guard technique. The transducer consists of a wide bandwidth and high slew rate differentiator where the lead inductance and stray capacitance effects are compensated. The sensor edge effect is eliminated by using a guard electrode based on the virtual ground potential of the operational amplifier. A theoretical modeling and a calibration method are also presented. The results obtained seem to confirm the validity of the proposed technique.
Resumo:
The results of a numerical study of premixed Hydrogen-air flows ignition by an oblique shock wave (OSW) stabilized by a wedge are presented, in situations when initial and boundary conditions are such that transition between the initial OSW and an oblique detonation wave (ODW) is observed. More precisely, the objectives of the paper are: (i) to identify the different possible structures of the transition region that exist between the initial OSW and the resulting ODW and (ii) to evidence the effect on the ODW of an abrupt decrease of the wedge angle in such a way that the final part of the wedge surface becomes parallel to the initial flow. For such a geometrical configuration and for the initial and boundary conditions considered, the overdriven detonation supported by the initial wedge angle is found to relax towards a Chapman-Jouguet detonation in the region where the wedge surface is parallel to the initial flow. Computations are performed using an adaptive, unstructured grid, finite volume computer code previously developed for the sake of the computations of high speed, compressible flows of reactive gas mixtures. Physico-chemical properties are functions of the local mixture composition, temperature and pressure, and they are computed using the CHEMKIN-II subroutines.
Resumo:
Porphyrias are a family of inherited diseases, each associated with a partial defect in one of the enzymes of the heme biosynthetic pathway. In six of the eight porphyrias described, the main clinical manifestation is skin photosensitivity brought about by the action of light on porphyrins, which are deposited in the upper epidermal layer of the skin. Porphyrins absorb light energy intensively in the UV region, and to a lesser extent in the long visible bands, resulting in transitions to excited electronic states. The excited porphyrin may react directly with biological structures (type I reactions) or with molecular oxygen, generating excited singlet oxygen (type II reactions). Besides this well-known photodynamic action of porphyrins, a novel light-independent effect of porphyrins has been described. Irradiation of enzymes in the presence of porphyrins mainly induces type I reactions, although type II reactions could also occur, further increasing the direct non-photodynamic effect of porphyrins on proteins and macromolecules. Conformational changes of protein structure are induced by porphyrins in the dark or under UV light, resulting in reduced enzyme activity and increased proteolytic susceptibility. The effect of porphyrins depends not only on their physico-chemical properties but also on the specific site on the protein on which they act. Porphyrin action alters the functionality of the enzymes of the heme biosynthetic pathway exacerbating the metabolic deficiencies in porphyrias. Light energy absorption by porphyrins results in the generation of oxygen reactive species, overcoming the protective cellular mechanisms and leading to molecular, cell and tissue damage, thus amplifying the porphyric picture.
Resumo:
The objective of the present investigation was to compare the sensitivity of an electronic nociceptive mechanical paw test with classical mechanical tests to quantify the intensity variation of inflammatory nociception. The electronic pressure-meter test consists of inducing the hindpaw flexion reflex by poking the plantar region with a polypropylene pipette tip adapted to a hand-held force transducer. This method was compared with the classical von Frey filaments test and with the rat paw constant pressure test, a modification of the Randall and Selitto test developed by our group. When comparing the three methods, the electronic pressure-meter and the rat paw constant pressure test, but not the von Frey filaments test, detected time vs treatment interactions in prostaglandin E2 (PGE2)-induced hypernociception. Both methods also detected the PGE2-induced hypernociception in dose- (50-400 ng/paw) and time- (1-4 h) dependent manners, and time vs treatment interactions induced by carrageenin (25-400 µg/paw). Furthermore, the electronic pressure-meter test was more sensitive at early times, whereas the constant pressure test was more sensitive at later times. Moreover, the electronic pressure-meter test detected the dose-dependent antinociceptive effect of local indomethacin (30-300 µg/paw) and dipyrone (80-320 µg/paw) on carrageenin- (200 µg/paw) and PGE2- (100 ng/paw) induced hypernociception, respectively, and also detected the ineffectiveness of indomethacin (300 µg) on the effect of PGE2. Our results show that the electronic pressure-meter provides a sensitive, objective and quantitative mechanical nociceptive test that could be useful to characterize new nociceptive inflammatory mediators and also to evaluate new peripheral analgesic substances.
Resumo:
The aim of the present investigation was to describe and validate an electronic mechanical test for quantification of the intensity of inflammatory nociception in mice. The electronic pressure-meter test consists of inducing the animal hindpaw flexion reflex by poking the plantar region with a polypropylene pipette tip adapted to a hand-held force transducer. This method was compared to the classical von Frey filaments test in which pressure intensity is automatically recorded after the nociceptive hindpaw flexion reflex. The electronic pressure-meter and the von Frey filaments were used to detect time versus treatment interactions of carrageenin-induced hypernociception. In two separate experiments, the electronic pressure-meter was more sensitive than the von Frey filaments for the detection of the increase in nociception (hypernociception) induced by small doses of carrageenin (30 µg). The electronic pressure-meter detected the antinociceptive effect of non-steroidal drugs in a dose-dependent manner. Indomethacin administered intraperitoneally (1.8-15 mg/kg) or intraplantarly (30-300 µg/paw) prevented the hypersensitive effect of carrageenin (100 µg/paw). The electronic pressure-meter also detected the hypernociceptive effect of prostaglandin E2 (PGE2; 10-100 ng) in a dose-dependent manner. The hypernociceptive effect of PGE2 (100 ng) was blocked by dipyrone (160 and 320 µg/paw) but not by intraplantar administration of indomethacin (300 µg/paw). The present results validate the use of the electronic pressure-meter as more sensitive than the von Frey filaments in mice. Furthermore, it is an objective and quantitative nociceptive test for the evaluation of the peripheral antinociceptive effect of anti-inflammatory analgesic drugs, which inhibit prostaglandin synthesis (indomethacin) or directly block the ongoing hypernociception (dipyrone).
Resumo:
In the last few years, hydrostatic pressure has been extensively used in the study of both protein folding and misfolding/aggregation. Compared to other chemical or physical denaturing agents, a unique feature of pressure is its ability to induce subtle changes in protein conformation, which allow the stabilization of partially folded intermediate states that are usually not significantly populated under more drastic conditions (e.g., in the presence of chemical denaturants or at high temperatures). Much of the recent research in the field of protein folding has focused on the characterization of folding intermediates since these species appear to be involved in a variety of disease-causing protein misfolding and aggregation events. The exact mechanisms of these biologicalphenomena, however, are still poorly understood. Here, we review recent examples of the use of hydrostatic pressure as a tool to obtain insight into the forces and energetics governing the productive folding or the misfolding and aggregation of proteins.