28 resultados para dorsaali striatum


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Drugs which influence 5-HTergic mechanisms can modify neuroleptic-induced catalepsy (NC) in rodents, a phenomenon produced by striatal dopamine (DA) receptor blockade. Previous research also suggests a role for endogenous nitric oxide (NO) in the modulation of striatal DAergic neurotransmission; in addition, NO seems to play a role in the 5-HT reuptake mechanism. It is known that clomipramine potentiates NC in mice, but the reported effects of selective 5-HT reuptake inhibitors (SSRIs) in this model are rather contradictory. We then decided to re-address this issue, investigating the effect of fluoxetine (FX), an SSRI, on NC. In view of the ubiquitous role of NO as a central neuromodulator, we also studied the effect of isosorbide dinitrate (ID), a centrally active NO donor, and how both drugs interact to affect the phenomenon of NC. Catalepsy was induced in male albino mice with haloperidol (H; 1 mg/kg, ip) and measured at 30-min interval by means of a bar test. Drugs (FX, ID and FX + ID) or saline (controls) were injected ip 30 min before H, with each animal used only once. FX (5 mg/kg) significantly reduced NC, with maximal attenuation (about 74%) occurring at 150 min after H. ID (5 mg/kg) also inhibited NC (150 min: 62% attenuation). The combined drugs (FX + ID group), however, caused a great potentiation of NC (4.7-fold at its maximum, at 90 min). The effect observed with ID is compatible with the hypothesis that NO increases DA release in the striatum. The attenuation of NC observed with FX may be due to a preferential net effect on the raphe somatodendritic synapse, where inhibitory 5-HT1A autoreceptors are operative. The enhancement of NC caused by combined administration of FX and ID suggests the presence of a pharmacodynamic interaction, whose mechanism, still unclear, may be related to a decrease in striatal DA release

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Policosanol is a mixture of higher aliphatic primary alcohols isolated from sugar cane wax, whose main component is octacosanol. An inhibitory effect of policosanol on platelet aggregation and cerebral ischemia in animal models has been reported. Thus, the objective of the present study was to evaluate the effect of policosanol on cerebral ischemia induced by unilateral carotid ligation and bilateral clamping and recirculation in Mongolian gerbils. Policosanol (200 mg/kg) administered immediately after unilateral carotid ligation and at 12- or 24-h intervals for 48 h significantly inhibited mortality and clinical symptoms when compared with controls, whereas lower doses (100 mg/kg) were not effective. Control animals showed swelling (tissue vacuolization) and necrosis of neurons in all areas of the brain studied (frontal cortex, hippocampus, striatum and olfactory tubercle), showing a similar injury profile. In the group treated with 200 mg/kg policosanol swelling and necrosis were significantly reduced when compared with the control group. In another experimental model, comparison between groups showed that the brain water content of control gerbils (N = 15) was significantly higher after 15 min of clamping and 4 h of recirculation than in sham-operated animals (N = 13), whereas policosanol (200 mg/kg) (N = 19) significantly reduced the edema compared with the control group, with a cerebral water content identical to that of the sham-operated animals. cAMP levels in the brain of control-ligated Mongolian gerbils (N = 8) were significantly lower than those of sham-operated animals (N = 10). The policosanol-treated group (N = 10) showed significantly higher cAMP levels (2.68 pmol/g of tissue) than the positive control (1.91 pmol/g of tissue) and similar to those of non-ligated gerbils (2.97 pmol/g of tissue). In conclusion, our results show an anti-ischemic effect of policosanol administered after induction of cerebral ischemia, in two different experimental models in Mongolian gerbils, suggesting a possible therapeutic effect in cerebral vascular disorders.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Some upper brainstem cholinergic neurons (pedunculopontine and laterodorsal tegmental nuclei) are involved in the generation of rapid eye movement (REM) sleep and project rostrally to the thalamus and caudally to the medulla oblongata. A previous report showed that 96 h of REM sleep deprivation in rats induced an increase in the activity of brainstem acetylcholinesterase (Achase), the enzyme which inactivates acetylcholine (Ach) in the synaptic cleft. There was no change in the enzyme's activity in the whole brain and cerebrum. The components of the cholinergic synaptic endings (for example, Achase) are not uniformly distributed throughout the discrete regions of the brain. In order to detect possible regional changes we measured Achase activity in several discrete rat brain regions (medulla oblongata, pons, thalamus, striatum, hippocampus and cerebral cortex) after 96 h of REM sleep deprivation. Naive adult male Wistar rats were deprived of REM sleep using the flower-pot technique, while control rats were left in their home cages. Total, membrane-bound and soluble Achase activities (nmol of thiocholine formed min-1 mg protein-1) were assayed photometrically. The results (mean ± SD) obtained showed a statistically significant (Student t-test) increase in total Achase activity in the pons (control: 147.8 ± 12.8, REM sleep-deprived: 169.3 ± 17.4, N = 6 for both groups, P<0.025) and thalamus (control: 167.4 ± 29.0, REM sleep-deprived: 191.9 ± 15.4, N = 6 for both groups, P<0.05). Increases in membrane-bound Achase activity in the pons (control: 171.0 ± 14.7, REM sleep-deprived: 189.5 ± 19.5, N = 6 for both groups, P<0.05) and soluble enzyme activity in the medulla oblongata (control: 147.6 ± 16.3, REM sleep-deprived: 163.8 ± 8.3, N = 6 for both groups, P<0.05) were also observed. There were no statistically significant differences in the enzyme's activity in the other brain regions assayed. The present findings show that the increase in Achase activity induced by REM sleep deprivation was specific to the pons, a brain region where cholinergic neurons involved in REM generation are located, and also to brain regions which receive cholinergic input from the pons (the thalamus and medulla oblongata). During REM sleep extracellular levels of Ach are higher in the pons, medulla oblongata and thalamus. The increase in Achase activity in these brain areas after REM sleep deprivation suggests a higher rate of Ach turnover.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ginkgo biloba extract EGb 761 has been reported to have therapeutic effects which have been attributed to anti-oxidant and free radical-scavenging activities, including a direct action on nitric oxide production. L G-nitro-arginine (L-NOARG), a nitric oxide synthase inhibitor, and haloperidol, a drug that blocks dopamine receptors, are both known to induce catalepsy in rodents. Nitric oxide has been shown to influence dopaminergic transmission in the striatum. The purpose of the present study was to evaluate the effect of the extract obtained from leaves of Ginkgo biloba tree EGb 761 on catalepsy induced by haloperidol or by L-NOARG. Albino Swiss mice (35-45 g, N = 8-12) received by gavage a single or repeated oral dose (twice a day for 4 days) of EGb 761 followed by ip injection of haloperidol or L-NOARG. After the treatments, the animals were submitted to behavioral evaluation using the catalepsy test. Acute treatment with 80 mg/kg EGb did not modify the catalepsy induced by L-NOARG but, the dose of 40 mg/kg significantly enhanced haloperidol-induced catalepsy measured at the 10th min of the test. After repeated treatment with 80 mg/kg EGb 761, a significant increase in the cataleptic effect produced by both haloperidol and L-NOARG was observed. These data show that repeated EGb 761 administration increases the effects of drugs that modify motor behavior in mice. Since the catalepsy test has predictive value regarding extrapyramidal effects, the possibility of pharmacological interactions between haloperidol and Ginkgo biloba extracts should be further investigated in clinical studies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder that affects the striatum most severely. However, except for juvenile forms, relative preservation of the cerebellum has been reported. The objective of the present study was to perform MRI measurements of caudate, putamen, cerebral, and cerebellar volumes and correlate these findings with the length of the CAG repeat and clinical parameters. We evaluated 50 consecutive patients with HD using MRI volumetric measurements and compared them to normal controls. Age at onset of the disease ranged from 4 to 73 years (mean: 43.1 years). The length of the CAG repeat ranged from 40 to 69 (mean: 47.2 CAG). HD patients presented marked atrophy of the caudate and putamen, as well as reduced cerebellar and cerebral volumes. There was a significant correlation between age at onset of HD and length of the CAG repeat, as well as clinical disability and age at onset. The degree of basal ganglia atrophy correlated with the length of the CAG repeat. There was no correlation between cerebellar or cerebral volume and length of the CAG repeat. However, there was a tendency to a positive correlation between duration of disease and cerebellar atrophy. While there was a negative correlation of length of the CAG repeat with age at disease onset and with striatal degeneration, its influence on extrastriatal atrophy, including the cerebellum, was not clear. Extrastriatal atrophy occurs later in HD and may be related to disease duration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present study was carried out in order to compare the effects of administration of organic (methylmercury, MeHg) and inorganic (mercury chloride, HgCl 2 ) forms of mercury on in vivo dopamine (DA) release from rat striatum. Experiments were performed in conscious and freely moving female adult Sprague-Dawley (230-280 g) rats using brain microdialysis coupled to HPLC with electrochemical detection. Perfusion of different concentrations of MeHg or HgCl 2 (2 µL/min for 1 h, N = 5-7/group) into the striatum produced significant increases in the levels of DA. Infusion of 40 µM, 400 µM, or 4 mM MeHg increased DA levels to 907 ± 31, 2324 ± 156, and 9032 ± 70% of basal levels, respectively. The same concentrations of HgCl 2 increased DA levels to 1240 ± 66, 2500 ± 424, and 2658 ± 337% of basal levels, respectively. These increases were associated with significant decreases in levels of dihydroxyphenylacetic acid and homovallinic acid. Intrastriatal administration of MeHg induced a sharp concentration-dependent increase in DA levels with a peak 30 min after injection, whereas HgCl 2 induced a gradual, lower (for 4 mM) and delayed increase in DA levels (75 min after the beginning of perfusion). Comparing the neurochemical profile of the two mercury derivatives to induce increases in DA levels, we observed that the time-course of these increases induced by both mercurials was different and the effect produced by HgCl 2 was not concentration-dependent (the effect was the same for the concentrations of 400 µM and 4 mM HgCl 2 ). These results indicate that HgCl 2 produces increases in extracellular DA levels by a mechanism differing from that of MeHg.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chronic neurodegenerative processes have been identified in the rat forebrain after prolonged survival following hyperthermia (HT) initiated a few hours after transient global ischemia. Since transient global ischemia and ischemic penumbra share pathophysiological similarities, this study addressed the effects of HT induced after recirculation of focal brain ischemia on infarct size during long survival times. Adult male Wistar rats underwent intra-luminal occlusion of the left middle cerebral artery for 60 min followed by HT (39.0-39.5°C) or normothermia. Control procedures included none and sham surgery with and without HT, and middle cerebral artery occlusion alone. Part I: 6-h HT induced at recirculation. Part II: 2-h HT induced at 2-, 6-, or 24-h recirculation. Part III: 2-h HT initiated at recirculation or 6-h HT initiated at 2-, 6- or 24-h recirculation. Survival periods were 7 days, 2 or 6 months. The effects of post-ischemic HT on cortex and striatum were evaluated histopathologically by measuring the area of remaining tissue in the infarcted hemisphere at -0.30 mm from bregma. Six-hour HT initiated from 6-h recirculation caused a significant decrease in the remaining cortical tissue between 7-day (N = 8) and 2-month (N = 8) survivals (98.46 ± 1.14 to 73.62 ± 8.99%, respectively). When induced from 24-h recirculation, 6-h HT caused a significant reduction of the remaining cortical tissue between 2- (N = 8) and 6-month (N = 9) survivals (94.97 ± 5.02 vs 63.26 ± 11.97%, respectively). These data indicate that post-ischemic HT triggers chronic neurodegenerative processes in ischemic penumbra, suggesting that similar fever-triggered effects may annul the benefit of early recirculation in stroke patients over the long-term.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The molecular mechanisms and potential clinical applications of neural precursor cells have recently been the subject of intensive study. Dlx5, a homeobox transcription factor related to the distal-less gene in Drosophila, was shown to play an important role during forebrain development. The subventricular zone (SVZ) in the adult brain harbors the largest abundance of neural precursors. The anterior SVZ (SVZa) contains the most representative neural precursors in the SVZ. Further research is necessary to elucidate how Dlx5-related genes regulate the differentiation of SVZa neural precursors. Here, we employed immunohistochemistry and molecular biology techniques to study the expression of Dlx5 and related homeobox genes Er81 and Islet1 in neonatal rat brain and in in vitro cultured SVZa neural precursors. Our results show that Dlx5 and Er81 are also highly expressed in the SVZa, rostral migratory stream, and olfactory bulb. Islet1 is only expressed in the striatum. In cultured SVZa neural precursors, Dlx5 mRNA expression gradually decreased with subsequent cell passages and was completely lost by passage four. We also transfected a Dlx5 recombinant plasmid and found that Dlx5 overexpression promoted neuronal differentiation of in vitro cultured SVZa neural precursors. Taken together, our data suggest that Dlx5 plays an important role during neuronal differentiation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Permanent bilateral occlusion of the common carotid arteries (2VO) in the rat has been established as a valid experimental model to investigate the effects of chronic cerebral hypoperfusion on cognitive function and neurodegenerative processes. Our aim was to compare the cognitive and morphological outcomes following the standard 2VO procedure, in which there is concomitant artery ligation, with those of a modified protocol, with a 1-week interval between artery occlusions to avoid an abrupt reduction of cerebral blood flow, as assessed by animal performance in the water maze and damage extension to the hippocampus and striatum. Male Wistar rats (N = 47) aged 3 months were subjected to chronic hypoperfusion by permanent bilateral ligation of the common carotid arteries using either the standard or the modified protocol, with the right carotid being the first to be occluded. Three months after the surgical procedure, rat performance in the water maze was assessed to investigate long-term effects on spatial learning and memory and their brains were processed in order to estimate hippocampal volume and striatal area. Both groups of hypoperfused rats showed deficits in reference (F(8,172) = 7.0951, P < 0.00001) and working spatial memory [2nd (F(2,44) = 7.6884, P < 0.001), 3rd (F(2,44) = 21.481, P < 0.00001) and 4th trials (F(2,44) = 28.620, P < 0.0001)]; however, no evidence of tissue atrophy was found in the brain structures studied. Despite similar behavioral and morphological outcomes, the rats submitted to the modified protocol showed a significant increase in survival rate, during the 3 months of the experiment (P < 0.02).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The striatum, the largest component of the basal ganglia, is usually subdivided into associative, motor and limbic components. However, the electrophysiological interactions between these three subsystems during behavior remain largely unknown. We hypothesized that the striatum might be particularly active during exploratory behavior, which is presumably associated with increased attention. We investigated the modulation of local field potentials (LFPs) in the striatum during attentive wakefulness in freely moving rats. To this end, we implanted microelectrodes into different parts of the striatum of Wistar rats, as well as into the motor, associative and limbic cortices. We then used electromyograms to identify motor activity and analyzed the instantaneous frequency, power spectra and partial directed coherence during exploratory behavior. We observed fine modulation in the theta frequency range of striatal LFPs in 92.5 ± 2.5% of all epochs of exploratory behavior. Concomitantly, the theta power spectrum increased in all striatal channels (P < 0.001), and coherence analysis revealed strong connectivity (coefficients >0.7) between the primary motor cortex and the rostral part of the caudatoputamen nucleus, as well as among all striatal channels (P < 0.001). Conclusively, we observed a pattern of strong theta band activation in the entire striatum during attentive wakefulness, as well as a strong coherence between the motor cortex and the entire striatum. We suggest that this activation reflects the integration of motor, cognitive and limbic systems during attentive wakefulness.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hoodia gordonii is a plant species used traditionally in southern Africa to suppress appetite. Recently, it has been associated with a significant increase in blood pressure and pulse rate in women, suggesting sympathomimetic activity. The present study investigated the possible antidepressant-like effects of acute and repeated (15 days) administration of H. gordonii extract (25 and 50 mg/kg, po) to mice exposed to a forced swimming test (FST). Neurochemical analysis of brain monoamines was also carried out to determine the involvement of the monoaminergic system on these effects. Acute administration of H. gordonii decreased the immobility of mice in the FST without accompanying changes in general activity in the open-field test during acute treatment, suggesting an antidepressant-like effect. The anti-immobility effect of H. gordonii was prevented by pretreatment of mice with PCPA [an inhibitor of serotonin (5-HT) synthesis], NAN-190 (a 5-HT1A antagonist), ritanserin (a 5-HT2A/2C antagonist), ondansetron (a 5-HT3A antagonist), prazosin (an α1-adrenoceptor antagonist), SCH23390 (a D1 receptor antagonist), yohimbine (an α2-adrenoceptor antagonist), and sulpiride (a D2 receptor antagonist). A significant increase in 5-HT levels in the striatum was detected after acute administration, while 5-HT, norepinephrine and dopamine were significantly elevated after chronic treatment. Results indicated that H. gordonii possesses antidepressant-like activity in the FST by altering the dopaminergic, serotonergic, and noradrenergic systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stroke is the third most common cause of death worldwide, and most stroke survivors present some functional impairment. We assessed the striatal oxidative balance and motor alterations resulting from stroke in a rat model to investigate the neuroprotective role of physical exercise. Forty male Wistar rats were assigned to 4 groups: a) control, b) ischemia, c) physical exercise, and d) physical exercise and ischemia. Physical exercise was conducted using a treadmill for 8 weeks. Ischemia-reperfusion surgery involved transient bilateral occlusion of the common carotid arteries for 30 min. Neuromotor performance (open-field and rotarod performance tests) and pain sensitivity were evaluated beginning at 24 h after the surgery. Rats were euthanized and the corpora striata was removed for assay of reactive oxygen species, lipoperoxidation activity, and antioxidant markers. Ischemia-reperfusion caused changes in motor activity. The ischemia-induced alterations observed in the open-field test were fully reversed, and those observed in the rotarod test were partially reversed, by physical exercise. Pain sensitivity was similar among all groups. Levels of reactive oxygen species and lipoperoxidation increased after ischemia; physical exercise decreased reactive oxygen species levels. None of the treatments altered the levels of antioxidant markers. In summary, ischemia-reperfusion resulted in motor impairment and altered striatal oxidative balance in this animal model, but those changes were moderated by physical exercise.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Optical coherence tomography (OCT) is a promising medical imaging technique that uses light to capture real-time cross-sectional images from biological tissues in micrometer resolution. Commercially available optical coherence tomography systems are employed in diverse applications, including art conservation and diagnostic medicine, notably in cardiology and ophthalmology. Application of this technology in the brain may enable distinction between white matter and gray matter, and obtainment of detailed images from within the encephalon. We present, herein, the in vivo implementation of OCT imaging in the rat brain striatum. For this, two male 60-day-old rats (Rattus norvegicus, Albinus variation, Wistar) were stereotactically implanted with guide cannulas into the striatum to guide a 2.7-French diameter high-definition OCT imaging catheter (Dragonfly™, St. Jude Medical, USA). Obtained images were compared with corresponding histologically stained sections to collect imaging samples. A brief analysis of OCT technology and its current applications is also reported, as well as intra-cerebral OCT feasibility on brain mapping during neurosurgical procedures.