127 resultados para deposition temperature
Resumo:
Isoprene emission from plants accounts for about one third of annual global volatile organic compound emissions. The largest source of isoprene for the global atmosphere is the Amazon Basin. This study aimed to identify and quantify the isoprene emission and photosynthesis at different levels of light intensity and leaf temperature, in three phenological phases (young mature leaf, old mature leaf and senescent leaf) of Eschweilera coriacea (Matamatá verdadeira), the species with the widest distribution in the central Amazon. In situ photosynthesis and isoprene emission measurements showed that young mature leaf had the highest rates at all light intensities and leaf temperatures. Additionally, it was observed that isoprene emission capacity (Es) changed considerably over different leaf ages. This suggests that aging leads to a reduction of both leaf photosynthetic activity and isoprene production and emission. The algorithm of Guenther et al. (1999) provided good fits to the data when incident light was varied, however differences among E S of all leaf ages influenced on quantic yield predicted by model. When leaf temperature was varied, algorithm prediction was not satisfactory for temperature higher than ~40 °C; this could be because our data did not show isoprene temperature optimum up to 45 °C. Our results are consistent with the hypothesis of the isoprene functional role in protecting plants from high temperatures and highlight the need to include leaf phenology effects in isoprene emission models.
Resumo:
Body color polymorphism of urban populations of cosmopolite fly Drosophila kikkawai Burla, 1954 was investigated in relation to its possible association with environmental temperature. Samples of D. kikkawai were collected in spring, summer, autumn and winter between 1987 to 1988, in zones with different levels of urbanization in the southern Brazilian city of Porto Alegre, Rio Grande do Sul. A clear association was observed between darker flies and both seasons with low temperatures and areas of low urbanization (where temperature is generally lower than in urbanized areas). Results of preliminary laboratory experiments involving six generations of flies grown in chambers at temperatures of 17º and 25ºC confirmed this tendency to a relationship between body color and temperature, with allele frequency of the main gene involved in body pigmentation changing over time.
Resumo:
Drosophila willistoni (Sturtevant, 1916) is a species of the willistoni group of Drosophila having wide distribution from the South of USA (Florida) and Mexico to the North of Argentina. It has been subject of many evolutionary studies within the group, due to its considerable ability to successfully occupy a wide range of environments and also because of its great genetic variability expressed by different markers. The D. willistoni 17A2 strain was collected in 1991 in the state of Rio Grande do Sul, Brazil (30°05'S, 51°39'W), and has been maintained since then at the Drosophila laboratory of UFRGS. Different to the other D. willistoni strains maintained in the laboratory, the 17A2 strain spontaneously produced mutant males white-like (white eyes) and sepia-like (brown eyes) in stocks held at 17°C. In order to discover if this strain is potentially hypermutable, we submitted it to temperature stress tests. Eighteen isofemale strains were used in our tests and, after the first generation, all the individuals produced in each strain were maintained at 29°C. Different phenotype alterations were observed in subsequent generations, similar to mutations already well characterized in D. melanogaster (white, sepia, blistered and curly). In addition, an uncommon phenotype alteration with an apparent fusion of the antennae was observed, but only in the isofemale line nº 31. This last alteration has not been previously described as a mutation in the D. melanogaster species. Our results indicate that the D. willistoni 17A2 strain is a candidate for hypermutability, which presents considerable cryptic genetic variability. Different factors may be operating for the formation of this effect, such as the mobilization of transposable elements, effect of inbreeding and alteration of the heat-shock proteins functions.
Resumo:
Metamysidopsis atlantica elongata (Bascescu, 1968) is a common mysid in the surf zone of sandy beaches from the state of Rio Grande do Sul, Brazil, where it is frequently recorded forming dense aggregations. Trough laboratory trials, behavioral responses to salinity (10, 20, 25, 28, 30, 40 e 45), temperature (10, 15, 20, 30±1ºC) and light (yes/no) were tested using adult males, adult females and juveniles. Although there was no response to temperature, the species showed clear response to salinity and light. In the presence of light, organisms remained in the bottom of the aquaria, but moved to surface when bottom salinities were increased. In the absence of light, adults moved to the surface. However, juveniles moved down to or remained on the bottom, maybe as a response to avoid adult predation.
Resumo:
This study has been carried out at the central region of the Araguaia river on the border between the states of Goiás and Mato Grosso in the Brazilian Amazon Basin from September to December 2000. We recorded temperature fluctuation, clutch-size, incubation period and hatching success rate and hatchlings' sex ratio of five nests of Podocnemis expansa (Schweigger, 1812). Despite the relatively small sample size we infer that: a) nests of P. expansa in the central Araguaia river have a lower incubation temperature than nests located further south; however, incubation period is shorter, hatching success rate is lower and clutch-size is larger; b) Podocnemis expansa may present a female-male-female (FMF) pattern of temperature sex-determination (TSD); c) thermosensitive period of sex determination apparently occur at the last third of the incubation period; and, d) future studies should prioritize the relationship between temperature variation (i.e., range and cycle) and embryos development, survivorship and sex determination.
Resumo:
During the two-month rearing period, the effect of four water temperatures (15°C, 20°C, 25°C and 30°C) on survival rate, number of molts, and growth rate (molt increment and intermolt period) of juvenile Macrobrachium borellii Nobili, 1896 and Palaemonetes argentinus Nobili, 1901 prawns was evaluated in laboratory conditions. The two species showed some similarities in their both survival and growth pattern at different temperatures. The survival rate was highest at 20°C and 25°C, decreasing at the lowest temperature. The number of molts increased at higher temperatures, ranging the intermolt period from 22.2 days to 9.9 days, for M. borellii, and from 20.8 to 9.5 days for P. argentinus, corresponding those values to 15°C and 30°C, respectively. No difference between species was noted in the intermolt period. The size increment by molting increased significantly from 15°C to 25°C, whereas a reduction in the growth of prawns was observed at 30°C. Significant differences among temperatures were found in the slope of regressions between the size increment by molting and the cephalothorax length. M. borellii showed a significantly higher tolerance to elevated temperature and a faster growth (about twice at 25°C) than P. argentinus. These differences could provide M. borellii a competitive advantage for a better adaptation to the dynamic of freshwater environment, especially in areas with anthropogenic impact.
Resumo:
Growth, metabolic rate, and energy reserves of Cherax quadricarinatus (von Martens, 1868) juveniles were evaluated in crayfish acclimated for 16 weeks to either 25ºC (temperature near optimum) or 20ºC (marginal for the species). Additionally, the modulating effect of ecdsyone on acclimation was studied. After 12 weeks of exposure, weight gain of both experimental groups acclimated to 25ºC (control: C25, and ecdysone treated: E25) was significantly higher than that of those groups acclimated to 20ºC (C20 and E20). A total compensation in metabolic rate was seen after acclimation from 25ºC to 20ºC; for both the control group and the group treated with ecdysone. A Q10value significantly higher was only observed in the group acclimated to 20ºC and treated with ecdysone. A reduction of glycogen reserves in both hepatopancreas and muscle, as well as a lower protein content in muscle, was seen in both groups acclimated to 20ºC. Correspondingly, glycemia was always higher in these groups. Increased lipid levels were seen in the hepatopancreas of animals acclimated to 20ºC, while a higher lipid level was also observed in muscle at 20ºC, but only in ecdysone-treated crayfish.
Resumo:
The blowfly species are important components in necrophagous communities of the Neotropics. Besides being involved in the degradation of animal organic matter, they may serve as vectors for pathogens and parasites, and also cause primary and secondary myiasis. The occurrence pattern of these species is well defined, yet it is still not very clear which of these environmental factors determine the structure of the assemblies. This paper was developed to evaluate the influence of mean temperature and relative humidity variation in the abundance and richness of blowflies in the Brazilian southernmost state, Rio Grande do Sul, where temperature variation is well marked throughout the year. To evaluate this objective, WOT (Wind Oriented Trap) were installed with beef liver as bait in three environments for 10 consecutive days in each month between July 2003 and June 2004. A total of 13,860 flies were collected distributed among 16 species with a higher frequency of Lucilia eximia (Wiedemann, 1819) and Chrysomya albiceps (Wiedemann, 1819). The mean temperature and relative humidity influence the richness of blowflies, with greater richness and abundance in late spring and early summer, whereas abundance was only influenced by temperature. Each species responded differently with respect to these variables, where L. eximia is not influenced by any of the two abiotic factors, despite the high abundance presented. This paper presents the results of the sensitivity for the presence or absence of species of Calliphoridae and on the variation of the abundance of these species under regime temperature changes and relative humidity with implications for public health and animal management.
Resumo:
The engineers of the modern University City are constructing a graceful bridge, named PONTE OSWALDO CRUZ, that crosses a portion of the Guanabara Bay (Fig. 1). The work at west pillar stopped for 3 years (The concret structure in Est. 1). As it will be seen from n.º 1 5 of the fig. 1, Est. I, the base of the structure will have five underground boxes of reinforcement, but, to-day they are just like as five uncovered water ponds, until at present: May 1963. (Est. I fig. 3, n.º 3 pond n.º 3; A. old level of the water; B. actual level of the water; c. green water; E. mass of bloom of blue algae Microcystis aeruginosa). Soon after SW portion, as 5 cells in series, of the pillar abutments, and also the NE portion nearly opposite in the Tibau Mount will be filled up with earth, a new way will link Rio City and the University City. We see to day Est. I, fig. 1 the grasses on the half arenous beach of the Tibau Point. These natural Cyperaceae and Gramineae will be desappear because of so a new road, now under construction, when completed will be 33 feet above the mean sea level, as high as the pillar, covering exactly as that place. Although rainfall was the chief source of water for these ponds, the first water (before meterorological precipitations of whatever first rain it might fall) was a common tap water mixed with Portland Cement, which exuded gradually through the pores of the concret during its hardenning process. Some data of its first cement water composition are on the chemical table, and in Tab. n.º 4 and "Resultado n.º 1". The rain receiving surface of each pond were about 15 by 16 feet, that is, 240 square feet; when they were full of water, their depth was of 2 feet 3", having each pond about 4,000 gallons. Climatic conditions are obviously similar of those of the Rio de Janeiro City: records of temperature, of precipitation and evaporation are seen on the graphics, figs. 2, 3, 4. Our conceptions of 4 phases is merely to satisfy an easy explanation thus the first phase that of exudation of concrete. We consider the 2nd. phase formation of bacterian and cyanophycean thin pellicel. 3rd. phase - dilution by rains, and fertilisation by birds; the 4th phase - plankton flora and fauna established. The biological material arrived with the air, the rains, and also with contaminations by dusts; with big portion of sand, of earth, and leaves of trees resulted of the SW wind actions in the storming days (See - Est. I, fig. 3, G. - the mangrove trees of the Pinheiro Island). Many birds set down and rest upon the pillar structure, its faeces which are good fertilizers fall into the ponds. Some birds were commonly pigeons, black ravens, swallows, sparrows and other sea mews, moor hens, and a few sea birds of comparatively rare occurence. We get only some examples of tropical dust contaminated helioplankton, of which incipient observations were been done sparcely. See the systematic list of the species of plankters. Phytoplankters - Cyanophyta algae as a basic part for food of zooplankters, represented chiefly by rotiferse, water-fleas Moinodaphnia and other Crustacea: Ostracoda Copepoda and Insecta: Chironomidae and Culicidae larvae. The polysaprobic of septic irruptions have not been done only by heating in summer, and, a good reason of that, for example: when the fifth pond was in polysaprobic phase as the same time an alike septic phase do not happened into the 3rd. pond, therefore, both were in the same conditions of temperature, but with unlike contaminations. Among the most important aquatic organisms used as indicatiors of pollution - and microorganisms of real importance in the field of sanitary science, by authorities of renown, for instance: PALMER, PRESCOTT, INGRAM, LIEBMANN, we choose following microalgae: a) The cosmopolite algae Scenedesmus quadricuada, a common indicator in mesosaprobio waters, which lives between pH 7,0 and it is assimilative of NO[3 subscripted] and NH[4 subscripted]. b) Species of the genus Chlamydomonas; it is even possible that all the species of theses genus inhabit strong-mesosaprobic to polysaprobic waters when in massive blooms. c) Several species of Euglenaceae in fast growing number, at the same time of the protozoa Amoebidae, Vorticellidae and simultaneous with deposition of the decaying cells of the blue algae Anacystis cyanea (= Microcystis) when the consumed oxygen by organic matter resulted in 40 mg. L. But, we found, among various Euglenacea the cosmopolite species (Euglena viridis, a well known polysaprobic indicatior of which presence occur in septic zone. d) Analcystis cyanea (= M. aeruginosa) as we observed was in blooms increasing to the order of billions of cells per litter, its maximum in the summer. Temperatures 73ºF to 82ºF but even 90ºF, the pH higher than 8. When these blue algae was joined to the rotifer Brachionus calyflorus the waters gets a milky appearance, but greenished one. In fact, that cosmopolite algae is used as a mesosaprobic indicator. Into the water of the ponds its predominance finished when the septic polysaprobic conditions began. e) Ankistrodesmus falcatus was present in the 5th pond from 26the. April untill the 26th July, and when N.NH[4 subscripted] gets 1.28 mg. L. and when chlorinity stayed from 0.034 to 0.061 mg. L. It never was found at N.NH[4 subscripted] higher than 1 mg. L. The green algae A. falcatus, an indicatior of pollution, lives in moderate mesosaprobic waters. f) As everyone knows, the rotifer eggs may be widely dispersed by wind. The rotifer Asplanchna brightwelli in our observation seemed like a green colored bag, overcharged by green cells and detritus, specially into its spacious stomach, which ends blindly (the intestine, cloaca, being absent). The stock of Asplanchna in the ponds, during the construction of the bridge "PONTE OSWALDO CRUZ" inhabits alkaline waters, pH 8,0 a 8,3, and when we observed we noted its dissolved oxygen from 3.5 to 4 mg. L. In these ponds Asplanchna lived in 0,2 P.PO[4 subscripted]. (Remember the hydobiological observations foreign to braslian waters refer only from 0.06 to 0,010 mg. L. P.PO[4 subscripted]; and they refer resistance to 0.8 N.NH[4 subscripted]). By our data, that rotiger resist commonly to 1.2 until 1.8 mg. L.N.NH[4 subscripted]; here in our ponds and, when NO[2 subscripted] appears Asplanchna desappears. It may be that Asplanchna were devoured by nitrite resistant animals of by Culicidae or other mosquitoes devoured by Due to these facts the number and the distribution of Asplanchna varies considerabley; see - plates of plankton successions. g) Brachionus one of the commonest members of class Rotatoria was frquently found in abundance into the ponds, and we notice an important biological change produce by the rotifer Brachonus colyciflorus: the occurence of its Brachionus clayciflorus forms pallas, is rare in Brazil, as we know about this. h) When we found the water flea MOinodaphnia we do not record simultanous presence of the blue algae Agmenellun (= Merismopedia).
Resumo:
To note the effect of temperature on survival, growth and fecundity, newly hatched (zero day old) snails Indoplanorbis exustus were cultured at 10 degrees, 15 degrees, 20 degrees, 25 degrees, 30 degrees and 35 degreescentigrades constant temperatures and room temperature (17.5 degrees - 32.5 degrees centigrades). Individuals exposed to 10 degrees centigrades died within 3 days while those reared at 15 degrees, 20 degrees, 25 degrees, 30 degrees, 35 degrees centigrades and room temperature survived for a period of 6, 27, 18, 16, 12 and 17 weeks respectively. An individual added on an average 0.21 mm and 0.45 mg, 0.35 mm and 7.94 mg, 0.63 mm and 15.5 mg, 0.81 mm and 27.18 mg, 1.07 mm and 41.48 mg and 0.78 mm and 31.2 mg to the shell diameter and body weight respectively at those temperatures per week. The snails cultured at 15 degrees centigrades died prior to attainment of sexual maturity. On an average, an individual produced 31.9 and 582.77, 54.86 and 902.18, 56.01 and 968.45, 49.32 and 798.68 and 62.34 and 1143.97 capsules and eggs respectively at 20 degrees, 25 degrees, 30 degrees, 35 degrees centigrades and room temperature (17.5 degrees - 32.5 degrees centigrades).
Resumo:
Different blood consumption speed was observed in Triatoma infestans - nymphs and adults - exposed to 12 degrees C and 28 degrees C. Exposure to optimal temperature (28 degrees C) allows the insects to consume blood at a rate of 9% per day. Significative relationship between blood amount present in the promesenteron and consumed blood was found at 28 degrees. Consumption of blood was drastically reduced at the lowest temperature. Accordingly, lack of ovaric development, oviposition and mating behaviour was observed in insects kept at 12 degrees C. Relationship between laboratory and field observations are discussed.
Resumo:
The effect of temperature (20 degrees-35 degrees C) on different stages of Romanomermis iyengari was studied. In embryonic development, the single-cell stage eggs developed into mature eggs in 4.5-6.5 days at 25-35 degrees C but, required 9.5 days at 20 degrees C. Complete hatching occurred in 7 and 9 days after egg-laying at 35 and 30 degrees C, respectively. At 25 and 20 degrees C, 85-96 of the eggs did not hatch even by 30th day. Loss of infectivity and death of the preparasites occurred faster at higher temperatures. The 50 survival durations of preparasites at 20 and 35 degrees C were 105.8 and 10.6 hr respectively. They retained 50 infectivity up to 69.7 and 30.3 hr. The duration of the parasitic phase increased as temperature decreased. Low temperature favoured production of a higher proportion of females which were also larger in size. The maximum time taken for the juveniles to become adults was 14 days at 20 degrees C and the minimum was 9 days at 35 degrees C. Oviposition began earlier at higher temperature than at lower temperature. However, its fecundic period was shorter at 20 degrees C than at 35 degrees C indicating enhanced rate of oviposition at 20 degrees C. Fecundity was adversely affected at 20 degrees C and 35 degrees C. It is shown that the temperature range of 25 degrees-30 degrees C favours optimum development of R. iyengari.
Resumo:
Chrysomya albiceps specimens were obtained from colonies established with larvae and adults collected at the Federal Rural University in Rio de Janeiro, Seropédica, State of Rio de Janeiro. The larval stage of C. albiceps was allowed to develop in climatic chambers at temperatures of 18, 22, 27 and 32ºC, and the pupal stage was allowed to develop at 22, 27 and 32ºC (60 ± 10% RH and 14 hr photoperiod). The duration and viability of the larval stage of C. albiceps at 18, 22, 27 and 32ºC were 21.30, 10.61, 5.0 and 4.0 days and 76.5, 88.5, 98.5 and 99.5%, respectively, with mean mature larval weights of 45.16, 81.86, 84.35 and 70.53 mg, respectively. Mean duration and viability of the pupal stage at 22, 27 and 32ºC were 9.36, 4.7 and 3.0 days and 93.8, 100 and 100%, respectively. The basal temperature for the larval and pupal stage and for the larval and adult phase were 15.04, 17.39 and 15.38ºC, corresponding to 65.67, 44.15 and 114.23 DD.
Resumo:
Development of Rhodnius prolixus after eclosion until the adult stage was studied at constant temperatures (T), 15, 20, 25, 28, 35°C, and relative humidities (RH), 75, 86 and 97%, and fluctuating (16/8 hr) temperatures, T I/II, 15/28°C, 20/25°C, 25/28°C and 25/35°C, and relative humidities, RH I/II, 86/75% and 97/75%. Eclosion or molting were not observed at 15°C and 86 or 97% RH, respectively. At 35°C and 75% RH only few insects molted. By alternating T I/II, 15/28°C and 25/35°C, insects developed at high frequency. Cumulating the average lengths of the interphases within independent groups for each instar, R. prolixus reached the adult stage most rapidly (86.7 days) and at highest frequency per instar (mean: 91.8%) at 28°C and 75% RH. Under fluctuating T I/II, development was completed within 100 days or less at 25/28°C and 25/35°C with high rates of hatch and molting. Development was slowest at fluctuating TI/II, 15/28°C and 20/25°C (>185 days), and at constant 20°C (>300 days). Mortality was higher at constant 97% RH or fluctuating RH I, 97%, than at constant or fluctuating 86% RH. Refeeding was minimal at optimal conditions of T and RH for development. The most refeeding was observed at a constant 35°C.