37 resultados para cycling participation
Resumo:
Abstract:The objective of this work was to evaluate the effect of grazing intensity on the decomposition of cover crop pasture, dung, and soybean residues, as well as the C and N release rates from these residues in a long-term integrated soybean-beef cattle system under no-tillage. The experiment was initiated in 2001, with soybean cultivated in summer and black oat + Italian ryegrass in winter. The treatments consisted of four sward heights (10, 20, 30, and 40 cm), plus an ungrazed area, as the control. In 2009-2011, residues from pasture, dung, and soybean stems and leaves were placed in nylon-mesh litter bags and allowed to decompose for up to 258 days. With increasing grazing intensity, residual dry matter of the pasture decreased and that of dung increased. Pasture and dung lignin concentrations and C release rates were lower with moderate grazing intensity. C and N release rates from soybean residues are not affected by grazing intensity. The moderate grazing intensity produces higher quality residues, both for pasture and dung. Total C and N release is influenced by the greater residual dry matter produced when pastures were either lightly grazed or ungrazed.
Resumo:
Several aspects of nutrient cycling were studied at two sites of Atlantic Forest, in São Paulo State, Southeast Brazil (23o46 S; 46o18 W), which exhibited different degrees of forest structure decline caused by the air pollution emitted by the industrial complex of Cubatão, being referred here as the most and least affected sites (MAS and LAS, respectively). These investigations were developed during 1984 - 1986, a period in which the most severe negative effects of air pollution could be observed. Concentrations and amounts of N, P, K, Ca, Mg and S in four ecosystem compartments (leaves, litter layer, soil and roots) and in rainfall, throughfall and litterfall are briefly presented. At each site, the content of mineral elements generally decreased from leaves to litterfall and litter layer on the forest floor. Soil surface layer (0 - 5 cm) in both sites was the richest in mineral elements. Soil fertility was greater at LAS. In general, nutrient amounts remaining in the compartments and cycling through the ecosystem were greater at LAS as well, which could be due to the higher complexity of the forest structure at this site. Rainfall contributed more to soil inputs of K, Ca, Mg and S than litterfall at both sites. The nutrient residence times in the litter layer were higher and the index of nutrient use efficiency was lower at the most affected site. It was concluded that nutrient cycling was disturbed by air pollution at both sites, but to a greater extent at MAS. The main consequences of the air pollution stress were detected in the flux of nutrients through litterfall and in the litter layer on the forest floor.
Resumo:
The aim of the present study was to investigate the role of bradykinin in the inhibitory action of captopril in hypertension induced by L-NAME in anesthetized rats. Male Wistar rats (260-320 g) were anesthetized with chloralose and arterial blood pressure was recorded with a polygraph pressure transducer. The hypertensive effect of L-NAME was studied in rats pretreated with saline, captopril or HOE 140 plus captopril. The effect of captopril was also studied during the sustained pressor effect of L-NAME. The acute pressor effect of L-NAME (10 mg/kg, iv) was significantly reduced by iv pretreatment with 2 mg/kg captopril (D increase of 49 ± 4.9 mmHg reduced to 20 ± 5.4 mmHg, P = 0.01). The pressor effect of L-NAME (D increase of 38 ± 4.8 mmHg) observed in rats pretreated with captopril and HOE 140 (0.1 mg/kg, iv) was not significantly different from that induced by L-NAME in rats pretreated with saline (P = 0.09). During the sustained pressor effect induced by L-NAME (D increase of 49 ± 4.9 mmHg) captopril induced a significant (P<0.05) reduction in arterial blood pressure (D decrease of 22 ± 3.0 mmHg). The present results demonstrate that the acute pressor effect of L-NAME is reduced by captopril and this inhibitory effect may be partly dependent on the potentiation of the vasodilator actions of bradykinin
Resumo:
We have previously demonstrated that acute third ventricle injections of both lead and cadmium prevent the dipsogenic response elicited by dehydration or by central injections of dipsogenic agents such as angiotensin II, carbachol and isoproterenol in rats. We have also shown that the antidipsogenic action of cadmium may be due, at least in part, to activation of thirst-inhibitory central serotonergic pathways. In the present paper we show that in Wistar male rats the antidipsogenic effect of both lead acetate (3.0 nmol/rat) and cadmium chloride (3.0 nmol/rat) may be partially dependent on the activation of brain opiatergic pathways since central injections of naloxone (82.5 nmol/rat), a non-selective opioid antagonist, blunt the thirst-inhibiting effect of these metals. One hundred and twenty minutes after the second third ventricle injections, dehydrated animals (14 h overnight) receiving saline + sodium acetate displayed a high water intake (7.90 ± 0.47 ml/100 g body weight) whereas animals receiving saline + lead acetate drank 3.24 ± 0.47 ml/100 g body weight. Animals receiving naloxone + lead acetate drank 6.94 ± 0.60 ml/100 g body weight. Animals receiving saline + saline drank 8.16 ± 0.66 ml/100 g body weight whilst animals receiving saline + cadmium chloride drank 1.63 ± 0.37 ml/100 g body weight. Animals receiving naloxone + cadmium chloride drank 8.01 ± 0.94 ml/100 g body weight. It is suggested that acute third ventricle injections of both lead and cadmium exert their antidipsogenic effect by activating thirst-inhibiting opioid pathways in the brain.
Resumo:
Thymocyte differentiation is the process by which bone marrow-derived precursors enter the thymus, proliferate, rearrange the genes and express the corresponding T cell receptors, and undergo positive and/or negative selection, ultimately yielding mature T cells that will represent the so-called T cell repertoire. This process occurs in the context of cell migration, whose cellular and molecular basis is still poorly understood. Kinetic studies favor the idea that these cells leave the organ in an ordered pattern, as if they were moving on a conveyor belt. We have recently proposed that extracellular matrix glycoproteins, such as fibronectin, laminin and type IV collagen, among others, produced by non-lymphoid cells both in the cortex and in the medulla, would constitute a macromolecular arrangement allowing differentiating thymocytes to migrate. Here we discuss the participation of both molecules with adhesive and de-adhesive properties in the intrathymic T cell migration. Functional experiments demonstrated that galectin-3, a soluble ß-galactoside-binding lectin secreted by thymic microenvironmental cells, is a likely candidate for de-adhesion proteins by decreasing thymocyte interaction with the thymic microenvironment.
Resumo:
Hypoxia elicits hyperventilation and hypothermia, but the mechanisms involved are not well understood. The nitric oxide (NO) pathway is involved in hypoxia-induced hypothermia and hyperventilation, and works as a neuromodulator in the central nervous system, including the locus coeruleus (LC), which is a noradrenergic nucleus in the pons. The LC plays a role in a number of stress-induced responses, but its participation in the control of breathing and thermoregulation is unclear. Thus, in the present study, we tested the hypothesis that LC plays a role in the hypoxia-induced hypothermia and hyperventilation, and that NO is involved in these responses. Electrolytic lesions were performed bilaterally within the LC in awake unrestrained adult male Wistar rats weighing 250-350 g. Body temperature and pulmonary ventilation (VE) were measured. The rats were divided into 3 groups: control (N = 16), sham operated (N = 7) and LC lesioned (N = 19), and each group received a saline or an NG-nitro-L-arginine methyl ester (L-NAME, 250 µg/µl) intracerebroventricular (icv) injection. No significant difference was observed between control and sham-operated rats. Hypoxia (7% inspired O2) caused hyperventilation and hypothermia in both control (from 541.62 ± 35.02 to 1816.18 ± 170.7 and 36.3 ± 0.12 to 34.4 ± 0.09, respectively) and LC-lesioned rats (LCLR) (from 694.65 ± 63.17 to 2670.29 ± 471.33 and 36 ± 0.12 to 35.3 ± 0.12, respectively), but the increase in VE was higher (P<0.05) and hypothermia was reduced (P<0.05) in LCLR. L-NAME caused no significant change in VE or in body temperature under normoxia, but abolished both the hypoxia-induced hyperventilation and hypothermia. Hypoxia-induced hyperventilation was reduced in LCLR treated with L-NAME. L-NAME also abolished the hypoxia-induced hypothermia in LCLR. The present data indicate that hypoxia-induced hyperventilation and hypothermia may be related to the LC, and that NO is involved in these responses.
Resumo:
The nucleus isthmi (NI) is a mesencephalic structure of the amphibian brain. It has been reported that NI plays an important role in integration of CO2 chemoreceptor information and glutamate is probably involved in this function. However, very little is known about the mechanisms involved. Recently, it has been shown that nitric oxide synthase (NOS) is expressed in the brain of the frog. Thus the gas nitric oxide (NO) may be involved in different functions in the brain of amphibians and may act as a neurotransmitter or neuromodulator. We tested the hypothesis that NO plays a role in CO2-drive to breathing, specifically in the NI comparing pulmonary ventilation, breathing frequency and tidal volume, after microinjecting 100 nmol/0.5 µl of L-NAME (a nonselective NO synthase inhibitor) into the NI of toads (Bufo paracnemis) exposed to normocapnia and hypercapnia. Control animals received microinjections of vehicle of the same volume. Under normocapnia no significant changes were observed between control and L-NAME-treated toads. Hypercapnia caused a significant (P<0.01) increase in ventilation only after intracerebral microinjection of L-NAME. Exposure to hypercapnia caused a significant increase in breathing frequency both in control and L-NAME-treated toads (P<0.01 for the control group and P<0.001 for the L-NAME group). The tidal volume of the L-NAME group tended to be higher than in the control group under hypercapnia, but the increase was not statistically significant. The data indicate that NO in the NI has an inhibitory effect only when the respiratory drive is high (hypercapnia), probably acting on tidal volume. The observations reported in the present investigation, together with other studies on the presence of NOS in amphibians, indicate a considerable degree of phylogenetic conservation of the NO pathway amongst vertebrates.
Resumo:
The widespread consumption of anorectics and combined anorectic + alcohol misuse are problems in Brazil. In order to better understand the interactive effects of ethanol (EtOH) and diethylpropion (DEP) we examined the locomotion-activating effects of these drugs given alone or in combination in mice. We also determined whether this response was affected by dopamine (DA) or opioid receptor antagonists. A total of 160 male Swiss mice weighing approximately 30 g were divided into groups of 8 animals per group. The animals were treated daily for 7 consecutive days with combined EtOH + DEP (1.2 g/kg and 5.0 mg/kg, ip), EtOH (1.2 g/kg, ip), DEP (5.0 mg/kg, ip) or the control solution coadministered with the DA antagonist haloperidol (HAL, 0.075 mg/kg, ip), the opioid antagonist naloxone (NAL, 1.0 mg/kg, ip), or vehicle. On days 1, 7 and 10 after the injections, mice were assessed in activity cages at different times (15, 30, 45 and 60 min) for 5 min. The acute combination of EtOH plus DEP induced a significantly higher increase in locomotor activity (day 1: 369.5 ± 34.41) when compared to either drug alone (day 1: EtOH = 232.5 ± 23.79 and DEP = 276.0 ± 12.85) and to control solution (day 1: 153.12 ± 7.64). However, the repeated administration of EtOH (day 7: 314.63 ± 26.79 and day 10: 257.62 ± 29.91) or DEP (day 7: 309.5 ± 31.65 and day 10: 321.12 ± 39.24) alone or in combination (day 7: 459.75 ± 41.28 and day 10: 427.87 ± 33.0) failed to induce a progressive increase in the locomotor response. These data demonstrate greater locomotion-activating effects of the EtOH + DEP combination, probably involving DA and/or opioid receptor stimulation, since the daily pretreatment with HAL (day 1: EtOH + DEP = 395.62 ± 11.92 and EtOH + DEP + HAL = 371.5 ± 6.76; day 7: EtOH + DEP = 502.5 ± 42.27 and EtOH + DEP + HAL = 281.12 ± 16.08; day 10: EtOH + DEP = 445.75 ± 16.64 and EtOH + DEP + HAL = 376.75 ± 16.4) and NAL (day 1: EtOH + DEP = 553.62 ± 38.15 and EtOH + DEP + NAL = 445.12 ± 55.67; day 7: EtOH + DEP = 617.5 ± 38.89 and EtOH + DEP + NAL = 418.25 ± 61.18; day 10: EtOH + DEP = 541.37 ± 32.86 and EtOH + DEP + NAL = 427.12 ± 51.6) reduced the locomotor response induced by combined administration of EtOH + DEP. These findings also suggest that a major determinant of combined anorectic-alcohol misuse may be the increased stimulating effects produced by the combination.
Resumo:
Several lines of evidence have shown that Trypanosoma cruzi interacts with host extracellular matrix (ECM) components producing breakdown products that play an important role in parasite mobilization and infectivity. Parasite-released antigens also modulate ECM expression that could participate in cell-cell and/or cell-parasite interactions. Increased expression of ECM components has been described in the cardiac tissue of chronic chagasic patients and diverse target tissues including heart, thymus, central nervous system and skeletal muscle of experimentally T. cruzi-infected mice. ECM components may adsorb parasite antigens and cytokines that could contribute to the establishment and perpetuation of inflammation. Furthermore, T. cruzi-infected mammalian cells produce cytokines and chemokines that not only participate in the control of parasitism but also contribute to the establishment of chronic inflammatory lesions in several target tissues and most frequently lead to severe myocarditis. T. cruzi-driven cytokines and chemokines may also modulate VCAM-1 and ICAM-1 adhesion molecules on endothelial cells of target tissues and play a key role in cell recruitment, especially of activated VLA-4+LFA-1+CD8+ T lymphocytes, resulting in a predominance of this cell population in the inflamed heart, central nervous system and skeletal muscle. The VLA-4+-invading cells are surrounded by a fine network of fibronectin that could contribute to cell anchorage, activation and effector functions. Since persistent "danger signals" triggered by the parasite and its antigens are required for the establishment of inflammation and ECM alterations, therapeutic interventions that control parasitism and selectively modulate cell migration improve ECM abnormalities, paving the way for the development of new therapeutic strategies improving the prognosis of T. cruzi-infected individuals.
Resumo:
The maximal lactate steady state (MLSS) is the highest blood lactate concentration that can be identified as maintaining a steady state during a prolonged submaximal constant workload. The objective of the present study was to analyze the influence of the aerobic capacity on the validity of anaerobic threshold (AT) to estimate the exercise intensity at MLSS (MLSS intensity) during cycling. Ten untrained males (UC) and 9 male endurance cyclists (EC) matched for age, weight and height performed one incremental maximal load test to determine AT and two to four 30-min constant submaximal load tests on a mechanically braked cycle ergometer to determine MLSS and MLSS intensity. AT was determined as the intensity corresponding to 3.5 mM blood lactate. MLSS intensity was defined as the highest workload at which blood lactate concentration did not increase by more than 1 mM between minutes 10 and 30 of the constant workload. MLSS intensity (EC = 282.1 ± 23.8 W; UC = 180.2 ± 24.5 W) and AT (EC = 274.8 ± 24.9 W; UC = 187.2 ± 28.0 W) were significantly higher in trained group. However, there was no significant difference in MLSS between EC (5.0 ± 1.2 mM) and UC (4.9 ± 1.7 mM). The MLSS intensity and AT were not different and significantly correlated in both groups (EC: r = 0.77; UC: r = 0.81). We conclude that MLSS and the validity of AT to estimate MLSS intensity during cycling, analyzed in a cross-sectional design (trained x sedentary), do not depend on the aerobic capacity.
Resumo:
We examined the effect of several K+ channel blockers such as glibenclamide, tolbutamide, charybdotoxin (ChTX), apamin, tetraethylammonium chloride (TEA), 4-aminopyridine (4-AP), and cesium on the ability of fentanyl, a clinically used selective µ-opioid receptor agonist, to promote peripheral antinociception. Antinociception was measured by the paw pressure test in male Wistar rats weighing 180-250 g (N = 5 animals per group). Carrageenan (250 µg/paw) decreased the threshold of responsiveness to noxious pressure (delta = 188.1 ± 5.3 g). This mechanical hyperalgesia was reduced by fentanyl (0.5, 1.5 and 3 µg/paw) in a peripherally mediated and dose-dependent fashion (17.3, 45.3 and 62.6%, respectively). The selective blockers of ATP-sensitive K+ channels glibenclamide (40, 80 and 160 µg/paw) and tolbutamide (80, 160 and 240 µg/paw) dose dependently antagonized the antinociception induced by fentanyl (1.5 µg/paw). In contrast, the effect of fentanyl was unaffected by the large conductance Ca2+-activated K+ channel blocker ChTX (2 µg/paw), the small conductance Ca2+-activated K+ channel blocker apamin (10 µg/paw), or the non-specific K+ channel blocker TEA (150 µg/paw), 4-AP (50 µg/paw), and cesium (250 µg/paw). These results extend previously reported data on the peripheral analgesic effect of morphine and fentanyl, suggesting for the first time that the peripheral µ-opioid receptor-mediated antinociceptive effect of fentanyl depends on activation of ATP-sensitive, but not other, K+ channels.
Resumo:
The nuclear factor of activated T cells (NFAT) family of transcription factors has been primarily identified in immune cells; however, these proteins have been recently found to be functionally active in several other non-immune cell types. NFAT proteins are activated upon different stimuli that lead to increased intracellular calcium levels. Regardless of their widely known cytokine gene expression properties, NFATs have been shown to regulate other genes related to cell cycle progression, cell differentiation and apoptosis, revealing a broader role for these proteins in normal cell physiology. Several reports have addressed the participation of NFATs in many aspects of malignant cell transformation and tumorigenic processes. In this review, we will discuss the involvement of the different NFAT family members in the regulation of cell cycling, differentiation and tumor formation, and also its implications on oncogenesis. Better understanding the mechanisms by which NFATs regulate cell cycle and tumor-related events should be relevant for the development of rational anti-cancer therapies.
Resumo:
Pemphigus is an inflammatory autoimmune disorder of the skin. Nitric oxide (NO) is an inflammatory mediator linked to a variety of physiological and pathophysiological phenomena that include skin tumors, psoriasis, urticaria, and atopic dermatitis. Inflammatory cells present in pemphigus lesions are important sources of NO production. We investigated whether NO is involved in pemphigus. A prospective cohort study was conducted at the Dermatology Service of the Hospital Universitário Walter Cantídio of the Federal University of Ceará. All patients seen at the outpatient clinic between August 2000 and July 2001, with a clinically and histologically confirmed diagnosis of pemphigus were included. The median age was 42.5 years (range: 12-69 years) with a male to female ratio of 3:2. Total serum nitrite levels, used as a marker for NO production, were determined by the Griess reaction. Skin biopsies from pemphigus and breast surgery (control) patients were used for the detection of the inducible NO synthase (iNOS) by immunohistochemistry. Twenty-two (22) patients with pemphigus and eight (8) controls who did not differ in demographic characteristics were included. Total serum nitrite levels were significantly higher (>7 µmol/L) in pemphigus patients compared to controls (<6 µmol/L), regardless of the severity of the clinical activity of pemphigus (P < 0.0001). All pemphigus biopsies presented increased immunostaining for iNOS that was not detected in normal skin samples. These data are the first to demonstrate that pemphigus patients display increased serum NO levels that are associated with increased iNOS expression in the affected skin.
Resumo:
Sleep disturbance is among the many consequences of ethanol abuse in both humans and rodents. Ethanol consumption can reduce REM or paradoxical sleep (PS) in humans and rats, respectively. The first aim of this study was to develop an animal model of ethanol-induced PS suppression. This model administered intragastrically (by gavage) to male Wistar rats (3 months old, 200-250 g) 0.5 to 3.5 g/kg ethanol. The 3.5 g/kg dose of ethanol suppressed the PS stage compared with the vehicle group (distilled water) during the first 2-h interval (0-2 h; 1.3 vs 10.2; P < 0.001). The second aim of this study was to investigate the mechanisms by which ethanol suppresses PS. We examined the effects of cholinergic drug pretreatment. The cholinergic system was chosen because of the involvement of cholinergic neurotransmitters in regulating the sleep-wake cycle. A second set of animals was pretreated with 2.5, 5.0, and 10 mg/kg pilocarpine (cholinergic agonist) or atropine (cholinergic antagonist). These drugs were administered 1 h prior to ethanol (3.5 g/kg) or vehicle. Treatment with atropine prior to vehicle or ethanol produced a statistically significant decrease in PS, whereas pilocarpine had no effect on minutes of PS. Although the mechanism by which ethanol induces PS suppression is not fully understood, these data suggest that the cholinergic system is not the only system involved in this interaction.
Resumo:
Chaperone members of the protein disulfide isomerase family can catalyze the thiol-disulfide exchange reaction with pairs of cysteines. There are 14 protein disulfide isomerase family members, but the ability to catalyze a thiol disulfide exchange reaction has not been demonstrated for all of them. Human endoplasmic reticulum protein chaperone thio-oxidoreductase (ERp18) shows partial oxidative activity as a protein disulfide isomerase. The aim of the present study was to evaluate the participation of ERp18 in gonadotropin-releasing hormone receptor (GnRHR) expression at the plasma membrane. Cos-7 cells were cultured, plated, and transfected with 25 ng (unless indicated) wild-type human GnRHR (hGnRHR) or mutant GnRHR (Cys14Ala and Cys200Ala) and pcDNA3.1 without insert (empty vector) or ERp18 cDNA (75 ng/well), pre-loaded for 18 h with 1 µCi myo-[2-3H(N)]-inositol in 0.25 mL DMEM and treated for 2 h with buserelin. We observed a decrease in maximal inositol phosphate (IP) production in response to buserelin in the cells co-transfected with hGnRHR, and a decrease from 20 to 75 ng of ERp18 compared with cells co-transfected with hGnRHR and empty vector. The decrease in maximal IP was proportional to the amount of ERp18 DNA over the range examined. Mutants (Cys14Ala and Cys200Ala) that could not form the Cys14-Cys200 bridge essential for plasma membrane routing of the hGnRHR did not modify maximal IP production when they were co-transfected with ERp18. These results suggest that ERp18 has a reduction role on disulfide bonds in wild-type hGnRHR folding.