88 resultados para cell nucleus DNA
Resumo:
Polyomavirus is a DNA tumor virus that induces a variety of tumors in mice. Its genome encodes three proteins, namely large T (LT), middle T (MT), and small T (ST) antigens, that have been implicated in cell transformation and tumorigenesis. LT is associated with cell immortalization, whereas MT plays an essential role in cell transformation by binding to and activating several cytoplasmic proteins that participate in growth factor-induced mitogenic signal transduction to the nucleus. The use of different MT mutants has led to the identification of MT-binding proteins as well as analysis of their importance during cell transformation. Studying the molecular mechanisms of cell transformation by MT has contributed to a better understanding of cell cycle regulation and growth control.
Resumo:
Recent research has shown that receptor-ligand interactions between surfaces of communicating cells are necessary prerequisites for cell proliferation, cell differentiation and immune defense. Cell-adhesion events have also been proposed for pathological conditions such as cancer growth, metastasis, and host-cell invasion by parasites such as Trypanosoma cruzi. RNA and DNA aptamers (aptus = Latin, fit) that have been selected from combinatorial nucleic acid libraries are capable of binding to cell-adhesion receptors leading to a halt in cellular processes induced by outside signals as a consequence of blockage of receptor-ligand interactions. We outline here a novel approach using RNA aptamers that bind to T. cruzi receptors and interrupt host-cell invasion in analogy to existing procedures of blocking selectin adhesion and function in vitro and in vivo.
Resumo:
The development of in vitro propagation of cells has been an extraordinary technical advance for several biological studies. The correct identification of the cell line used, however, is crucial, as a mistaken identity or the presence of another contaminating cell may lead to invalid and/or erroneous conclusions. We report here the application of a DNA fingerprinting procedure (directed amplification of minisatellite-region DNA), developed by Heath et al. [Nucleic Acids Research (1993) 21: 5782-5785], to the characterization of cell lines. Genomic DNA of cells in culture was extracted and amplified by PCR in the presence of VNTR core sequences, and the amplicons were separated by agarose gel electrophoresis. After image capture with a digital camera, the banding profiles obtained were analyzed using a software (AnaGel) specially developed for the storage and analysis of electrophoretic fingerprints. The fingerprints are useful for construction of a data base for identification of cell lines by comparison to reference profiles as well as comparison of similar lines from different sources and periodic follow-up of cells in culture.
Resumo:
To evaluate the human T-cell lymphotropic virus type I (HTLV-I) proviral DNA load among asymptomatic HTLV-I-infected carriers and patients with HTLV-I-associated myelopathy/tropical spastic paraparesis (HAM/TSP), real time PCR using TaqMan probes for the pol gene was performed in two million peripheral blood mononuclear cells (PBMC). The albumin gene was the internal genomic control and MT2 cells were used as positive control. The results are reported as copies/10,000 PBMC, and the detection limit was 10 copies. A total of 89 subjects (44 HAM/TSP and 45 healthy HTLV-I-infected carriers) followed up at the Institute of Infectious Diseases "Emilio Ribas" and in the Neurology Division of Hospital of Clínicas were studied. The asymptomatic HTLV-I-infected carriers had a median number of 271 copies (ranging from 5 to 4756 copies), whereas the HAM/TSP cases presented a median of 679 copies (5-5360 copies) in 10,000 PBMC. Thus, HAM/TSP patients presented a significantly higher HTLV-I proviral DNA load than healthy HTLV-I carriers (P = 0.005, one-way Mann-Whitney test). As observed in other persistent infections, proviral DNA load quantification may be an important tool for monotoring HTLV-I-infected subjects. However, long-term follow-up is necessary to validate this assay in the clinical setting.
Resumo:
The purpose of the present study was to identify the expression of p16INK4 in cervical cancer precursor lesions by immunohistochemistry and to correlate it with lesion grade and presence of human papillomavirus (HPV) infection. Cervical specimens from 144 women seen consecutively at the gynecology outpatient clinic of our institution from December 2003 to May 2005 were analyzed by cytopathology, histopathology, polymerase chain reaction for HPV-DNA, and p16INK4 immunostaining. Histologically normal biopsies, HPV-DNA negative by polymerase chain reaction, were used as control. HPV-DNA prevalence, including the control group, was 68.1% and the prevalence of p16INK4 expression was 55.0%. The percentage of cells stained by p16INK4 ranged from 10 to 100%, both in the group consisting of cervical intraepithelial neoplasia (CIN)1/HPV specimens and in the group of CIN2/CIN3 specimens with P value of 0.0001. p16INK4 expression was 48.3% in the CIN1/HPV group, as opposed to 94.3% in the CIN2/CIN3 group (P = 0.001), showing a statistically significant difference between the two groups. The quantitative method used here is simple and less subjective than the different semiquantitative methods described in the literature. In view of the different definitions of a p16INK4-positive case, it is almost impossible to compare the findings reported by different investigators. This study confirms the association between p16INK4 and CIN2 and CIN3 lesions. Moreover, it shows that some low grade lesions expressed high levels of this protein. This may indicate that such low grade lesions may be predisposed to progress to high grade lesions. This means that p16INK4 may be a strong marker for "neoplastic lesions" induced by HPV and not just an infection marker.
Resumo:
We have demonstrated that a synthetic DNA enzyme targeting early growth response factor-1 (Egr-1) can inhibit neointimal hyperplasia following vascular injury. However, the detailed mechanism of this inhibition is not known. Thus, the objective of the present study was to further investigate potential inhibitory mechanisms. Catalytic DNA (ED5) and scrambled control DNA enzyme (ED5SCR) were synthesized and transfected into primary cultures of rat vascular smooth muscle cells (VSMCs). VSMC proliferation and DNA synthesis were analyzed by the MTT method and BrdU staining, respectively. Egr-1, TGF-β1, p53, p21, Bax, and cyclin D1 expression was detected by RT-PCR and Western blot. Apoptosis and cell cycle assays were performed by FACS. Green fluorescence could be seen localized in the cytoplasm of 70.6 ± 1.52 and 72 ± 2.73% VSMCs 24 h after transfection of FITC-labeled ED5 and ED5SCR, respectively. We found that transfection with ED5 significantly inhibited cultured VSMC proliferation in vitro after 24, 48, and 72 h of serum stimulation, and also effectively decreased the uptake of BrdU by VSMC. ED5 specifically reduced serum-induced Egr-1 expression in VSMCs, further down-regulated the expression of cyclin D1 and TGF-β1, and arrested the cells at G0/G1, inhibiting entry into the S phase. FACS analysis indicated that there was no significant difference in the rate of apoptosis between ED5- and ED5SCR-transfected cells. Thus, ED5 can specifically inhibit Egr-1 expression, and probably inhibits VSMC proliferation by down-regulating the expressions of cyclin D1 and TGF-β1. However, ED5 has no effect on VSMC apoptosis.
Resumo:
The main objective of the present study was to find suitable DNA-targeting sequences (DTS) for the construction of plasmid vectors to be used to treat ischemic diseases. The well-known Simian virus 40 nuclear DTS (SV40-DTS) and hypoxia-responsive element (HRE) sequences were used to construct plasmid vectors to express the human vascular endothelial growth factor gene (hVEGF). The rate of plasmid nuclear transport and consequent gene expression under normoxia (20% O2) and hypoxia (less than 5% O2) were determined. Plasmids containing the SV40-DTS or HRE sequences were constructed and used to transfect the A293T cell line (a human embryonic kidney cell line) in vitro and mouse skeletal muscle cells in vivo. Plasmid transport to the nucleus was monitored by real-time PCR, and the expression level of the hVEGF gene was measured by ELISA. The in vitro nuclear transport efficiency of the SV40-DTS plasmid was about 50% lower under hypoxia, while the HRE plasmid was about 50% higher under hypoxia. Quantitation of reporter gene expression in vitro and in vivo, under hypoxia and normoxia, confirmed that the SV40-DTS plasmid functioned better under normoxia, while the HRE plasmid was superior under hypoxia. These results indicate that the efficiency of gene expression by plasmids containing DNA binding sequences is affected by the concentration of oxygen in the medium.
Resumo:
This study aims to explore the effect of microRNA-21 (miR-21) on the proliferation of human degenerated nucleus pulposus (NP) by targeting programmed cell death 4 (PDCD4) tumor suppressor. NP tissues were collected from 20 intervertebral disc degeneration (IDD) patients, and from 5 patients with traumatic spine fracture. MiR-21 expressions were tested. NP cells from IDD patients were collected and divided into blank control group, negative control group (transfected with miR-21 negative sequences), miR-21 inhibitor group (transfected with miR-21 inhibitors), miR-21 mimics group (transfected with miR-21 mimics) and PDCD4 siRNA group (transfected with PDCD4 siRNAs). Cell growth was estimated by Cell Counting Kit-8; PDCD4, MMP-2,MMP-9 mRNA expressions were evaluated by qRT-PCR; PDCD4, c-Jun and p-c-Jun expressions were tested using western blot. In IDD patients, the expressions of miR-21 and PDCD4 mRNA were respectively elevated and decreased (both P<0.05). The miR-21 expressions were positively correlated with Pfirrmann grades, but negatively correlated with PDCD4 mRNA (both P<0.001). In miR-21 inhibitor group, cell growth, MMP-2 and MMP-9 mRNA expressions, and p-c-Jun protein expressions were significantly lower, while PDCD4 mRNA and protein expressions were higher than the other groups (all P<0.05). These expressions in the PDCD4 siRNA and miR-21 mimics groups was inverted compared to that in the miR-21 inhibitor group (all P<0.05). MiR-21 could promote the proliferation of human degenerated NP cells by targeting PDCD4, increasing phosphorylation of c-Jun protein, and activating AP-1-dependent transcription of MMPs, indicating that miR-21 may be a crucial biomarker in the pathogenesis of IDD.
Resumo:
Forty-six allogeneic hematopoietic stem cell transplantation (HSCT) patients were monitored for the presence of CMV antibodies, CMV-DNA and CMV antigens after transplantation. Immunoenzymatic serological tests were used to detect IgM and the increase in CMV IgG antibodies (increase IgG), a nested polymerase chain reaction (N-PCR) was used to detect CMV-DNA, and an antigenemia assay (AGM) was used to detect CMV antigens. The presence of CMV-IgM and/or CMV-increase IgG antibodies was detected in 12/46 (26.1%) patients, with a median time between HSCT and the detection of positive serology of 81.5 days. A positive AGM was detected in 24/46 (52.2%) patients, with a median time between HSCT and antigen detection of 62 days. Two or more consecutive positive N-PCR results were detected in 32/46 (69.5%) patients, with a median time between HSCT and the first positive PCR of 50.5 days. These results confirmed that AGM and mainly PCR are superior to serology for the early diagnosis of CMV infection. Six patients had CMV-IgM and/or CMV-increase IgG with a negative AGM (five cases) or N-PCR assay (one case). In five of these cases the serological markers were detected during the first 100 days after HSCT, the period of highest risk. These findings support the idea that serology may be useful for monitoring CMV infections in HSCT patients, especially when PCR is unavailable.
Resumo:
Bacteria of the genus Bartonella are emerging pathogens detected in lymph node biopsies and aspirates probably caused by increased concentration of bacteria. Twenty-three samples of 18 patients with clinical, laboratory and/or epidemiological data suggesting bartonellosis were subjected to three nested amplifications targeting a fragment of the 60-kDa heat shock protein (HSP), the internal transcribed spacer 16S-23S rRNA (ITS) and the cell division (FtsZ) of Bartonella henselae, in order to improve detection in clinical samples. In the first amplification 01, 04 and 05 samples, were positive by HSP (4.3%), FtsZ (17.4%) and ITS (21.7%), respectively. After the second round six positive samples were identified by nested-HSP (26%), eight by nested-ITS (34.8%) and 18 by nested-FtsZ (78.2%), corresponding to 10 peripheral blood samples, five lymph node biopsies, two skin biopsies and one lymph node aspirate. The nested-FtsZ was more sensitive than nested-HSP and nested-ITS (p < 0.0001), enabling the detection of Bartonella henselae DNA in 15 of 18 patients (83.3%). In this study, three nested-PCR that should be specific for Bartonella henselae amplification were developed, but only the nested-FtsZ did not amplify DNA from Bartonella quintana. We conclude that nested amplifications increased detection of B. henselae DNA, and that the nested-FtsZ was the most sensitive and the only specific to B. henselae in different biological samples. As all samples detected by nested-HSP and nested-ITS, were also by nested-FtsZ, we infer that in our series infections were caused by Bartonella henselae. The high number of positive blood samples draws attention to the use of this biological material in the investigation of bartonellosis, regardless of the immune status of patients. This fact is important in the case of critically ill patients and young children to avoid more invasive procedures such as lymph nodes biopsies and aspirates.
Resumo:
Currently there are several methods to extract bacterial DNA based on different principles. However, the amount and the quality of the DNA obtained by each one of those methods is highly variable and microorganism dependent, as illustrated by coagulase-negative staphylococci (CoNS) which have a thick cell wall that is difficult to lyse. This study was designed to compare the quality and the amount of CoNS DNA, extracted by four different techniques: two in-house protocols and two commercial kits. DNA amount and quality determination was performed through spectrophotometry. The extracted DNA was also analyzed using agarose gel electrophoresis and by PCR. 267 isolates of CoNS were used in this study. The column method and thermal lyses showed better results with regard to DNA quality (mean ratio of A260/280 = 1.95) and average concentration of DNA (), respectively. All four methods tested provided appropriate DNA for PCR amplification, but with different yields. DNA quality is important since it allows the application of a large number of molecular biology techniques, and also it's storage for a longer period of time. In this sense the extraction method based on an extraction column presented the best results for CoNS.
Resumo:
To investigate epidemiological and pathogenetic features of HTLV-I infection, a cohort of carriers has been followed at the USP Teaching Hospital since 1991. This study describes the establishment of cell lines from peripheral blood mononuclear cells (PBMC) of infected subjects. Ex vivo PBMC were cultured with those from a seronegative donor and morphologic evidence of cell transformation was obtained after 90 days with detection of multinucleated cells exhibiting cerebriform nuclei. Integration of HTLV-I proviral DNA and expression of viral antigens was demonstrated in culture by PCR and immunofluorescence. Cell lines were maintained for 240 days, gradually weaned from exogenous IL-2. Immunophenotyping of cell lines on flow cytometry yielded evidence of cell activation. Establishment of HTLV-I-infected cell lines from ex vivo PBMC is feasible and may be useful for studies on lymphocyte phenotypic changes and on mechanisms of HTLV-induced cell proliferation. Moreover they may be used with diagnostic purposes in immunofluorescence tests.
Resumo:
Paracoccidioidomycosis is a systemic fungal infection caused by Paracoccidioides brasiliensis. As infectious diseases can cause DNA damage, the authors aimed at analyzing DNA breakage in peripheral blood cells of patients with paracoccidioidomycosis by using the comet assay. The results suggested that paracoccidioidomycosis does not cause genotoxicity.
Resumo:
O objetivo deste estudo foi padronizar uma metodologia de extração de DNA de alta qualidade a partir de amostras de sangue coagulado. Quarenta e oito amostras de sangue humano coagulado foram utilizadas para a extração de DNA pelo kit comercial EZ-DNA® (Biological Industries, Beit Haemek, Israel), pelo kit de coluna Neoscience® (One Lambda Inc., San Diego, CA) e pelo método modificado de salting out. Apenas o método de salting out foi capaz de extrair altas concentrações de DNA (média, 180ng/µL), as quais foram medidas pelo detector de fluorescência Qubit® (Invitrogen, USA). Este método permitiu a amplificação dos genes HLA (human leukocyte antigens) pela tecnologia PCR-SSO (polymerase chain reaction - specific sequence of oligonucleotides) Luminex, a qual exige DNA de boa qualidade, e de genes KIR (killer cell immunoglobulin-like receptors) pela técnica made in house PCR-SSP (polymerase chain reaction-sequence specific of primers), a qual demanda uma concentração específica de DNA (10ng/µL). Concluímos que a técnica de salting out modificada foi muito eficiente, simples e rápida para a extração de DNA de amostras de sangue humano coagulado, com o objetivo de realizar a genotipagem de genes HLA e KIR.