43 resultados para biotypes
Resumo:
The repetitive use of iodosulfuron for the control of weeds in winter cereals in the south of Brazil has favored the emergence of resistant Raphanus sativus biotypes. The objective of this study was to evaluate: the response of Raphanus sativus biotypes susceptible and resistant to different dosages of iodosulfuron; the control of biotypes with alternative registered herbicides for the control of the species in crops of wheat, corn and soybean; and the existence of cross-resistance of the biotypes. Thus, four experiments were done in a greenhouse, with a completely randomized design and four replicates. The experimental units were composed of vases with a volumetric capacity of 0.75 L filled with substrate, containing a plant each. For the dose-response curve, three biotypes (factor A) and nine doses of the iodosulfuron herbicide (factor B) were used. For the alternative control, the recommendation was herbicides in pre or postemergence of the crops, and the crossed-resistance was evaluated by using herbicides that inhibit the ALS enzyme of different chemical groups. The analyzed variables were control and shoot dry matter. GR50 of the susceptible biotype (B1) was 0.11 g a.i. ha-1, whereas GR50 of resistant biotypes (B4 and B13) was 102.9 and 86.8 g a.i. ha-1 of the iodosulfuron herbicide, respectively. The resistant biotypes presented crossed resistance to herbicides that inhibit the ALS enzyme, where the control can be efficient with the use of herbicides with different action mechanisms.
Resumo:
The natural distribution of thermotolerant Campylobacter sp. in dogs (150 stray animals and 64 pets) was studied. Campylobacters were more frequently isolated (p<0.01) from stray dogs (51.3%) rather than from pet dogs (21.9%). All the biotypes described by Lior for C. jejuni and C. coli were found among stray animals, whereas only C. jejuni biotypes I and II and C. coli biotype II were found among pet dogs. The need for more studies related to the role of environmental sanitary conditions in the spreading of Campylobacter species is noted.
Resumo:
The study involved 100 yeast isolates, obtained from urine samples provided by a Public Pediatric Hospital of São Paulo, Brazil, from 1999 to 2004. The most frequent species was Candida albicans, followed by C. tropicalis, C. glabrata and C. parapsilosis. In regard to virulence, 97% of the isolates showed index 3 for proteinase and 63% index 2 for phospholipase. The most frequent killer biotypes were 511 and 888.
Resumo:
SUMMARY Sporothrix schenckiiwas reclassified as a complex encompassing six cryptic species, which calls for the reassessment of clinical and epidemiological data of these new species. We evaluated the susceptibility of Sporothrix albicans (n = 1) , S. brasiliensis (n = 6) , S. globosa (n = 1), S. mexicana(n = 1) and S. schenckii(n = 36) to terbinafine (TRB) alone and in combination with itraconazole (ITZ), ketoconazole (KTZ), and voriconazole (VRZ) by a checkerboard microdilution method and determined the enzymatic profile of these species with the API-ZYM kit. Most interactions were additive (27.5%, 32.5% and 5%) or indifferent (70%, 50% and 52.5%) for TRB+KTZ, TRB+ITZ and TRB+VRZ, respectively. Antagonisms were observed in 42.5% of isolates for the TRB+VRZ combination. Based on enzymatic profiling, the Sporothrix schenckii strains were categorized into 14 biotypes. Leucine arylamidase (LA) activity was observed only for S. albicans and S. mexicana. The species S. globosaand S. mexicanawere the only species without β-glucosidase (GS) activity. Our results may contribute to a better understanding of virulence and resistance among species of the genus Sporothrixin further studies.
Resumo:
Thermophilic campylobacters were isolated from three sewage plants in Rio de Janeiro, RJ, Brazil and identified. Laboratory analysis of 390 sewage samples showed the presence of 169 thermophilic strains. The results demonstrated that human and animal pathogenic biotypes could be isolated from activated sludge during the initial processing steps. The aeration tank could be considered a barrier to Campylobacter survival. C. jejuni was the prevalent species isolated (40.8%).The most common biotypes were C. jejuni biotype I (21.3%), C. coli biotype I (16%) and C. jejuni biotype II ( 14.8%).
Resumo:
The pathogenic O1 Amazonia variant of Vibrio cholerae has been shown previously to have a cytotoxin acting on cultured Vero and Y-1 cells, and to lack important virulence factors such as the cholera toxin (Coelho et al. 1995a). This study extends the molecular analysis of the Amazonia strains, detecting the presence of the toxR gene, with a very similar sequence to that of the El Tor and classical biotypes. The outer membrane proteins are analyzed, detecting a variation among the group of Amazonia strains, with three different patterns found. As a by-product of this work a polymerase chain reaction fragment was sequenced, reading part of the sequence of the Lon protease of the Amazonia strains. This gene was not previously described in V. cholerae, but its sequence is present in the TIGR database specific for this species.
Resumo:
Acinetobacter baumannii is a strictly aerobic bacterium which causes severe infections, however its pathogenic characteristics are not well defined. Thirteen A. baumannii strains isolated from urine of hospitalized and nonhospitalized patients with different ages were investigated for the presence of virulence factors. The isolates belonged to biotypes 2, 6, and 9 and were sensitive to imipenem. The majority of them showed resistance to amikacin, ceftazidime, ceftriaxone, ciprofloxacin, gentamicin, norfloxacin, and trimethoprim-sulfamethoxazole. None of A. baumannii strains presented genes codifying for 17 different virulence factors previously described in uropathogenic Escherichia coli, when tested by polymerase chain reaction (PCR). Nine isolates agglutinated human group AB erythrocytes, in presence of mannose, but none of them agglutinated group O erythrocytes. Adherence to polystyrene was observed in 7 isolates, and this result did not correlate with that obtained in hemagglutination assay. All the isolates were able to grow in iron-limiting conditions, showing that A. baumannii produces some type of siderophore. However, the genes iutA and fyuA, from iron uptake system of E. coli and Yersinia sp., respectively, were not present in the isolates, suggesting the presence of a different type of siderophore. The fimbriae of A. baumannii strains that mediates the adherence are possibly mannose-resistant, eventhough the mechanism of adherence to human epithelial cells still remains to be elucidated.
Resumo:
Thirty-eight strains of Shiga toxin-producing Escherichia coli (STEC) were characterised in terms of biochemical properties, enterohaemolysin production and plasmid carriage. A wide variation in the biochemical properties was observed among the STEC, with 14 distinct biotypes identified. Biotype 1 was the most common, found in 29% of the strains. Enterohaemolysin production was detected in 29% of the strains. Most of the bacterial strains (95%) carried one or more plasmids and considerable heterogeneity in size and combinations was observed. Seven distinct plasmid profiles were identified. The most common profile, characterised by the presence of a single plasmid of ~90 kb, was found in 50% of these strains. These data indicate extensive diversity among STEC strains. No correlation was found among biotype, serotype, enterohaemolysin production and plasmid profile.
Resumo:
The dissemination of plasmid-mediated antimicrobial resistance genes may pose a substantial public health risk. In the present work, the occurrences ofblaCTX-M and plasmid-mediated ampCand qnrgenes were investigated in Escherichia colifrom 16 chicken carcasses produced by four commercial brands in Brazil. Of the brands tested, three were exporters, including one of organic chicken. Our study assessed 136 E. coli isolates that were grouped into 77 distinct biotypes defined by their origin, resistance profiling, the presence of β-lactamase and plasmid-mediated quinolone resistance genes and enterobacterial repetitive intergenic consensus-polimerase chain reaction typing. TheblaCTX-M-15, blaCTX-M-2 andblaCTX-M-8 genes were detected in one, 17 and eight different biotypes, respectively (45 isolates). Twenty-one biotypes (46 isolates) harboured blaCMY-2.Additionally, blaCMY-2 was identified in isolates that also carried either blaCTX-M-2 orblaCTX-M-8. The qnrB and/orqnrS genes occurred in isolates carrying each of the four types of β-lactamase determinants detected and also in oxyimino-cephalosporin-susceptible strains. Plasmid-mediated extended-spectrum β-lactamase (ESBL) and AmpC determinants were identified in carcasses from the four brands tested. Notably, this is the first description ofblaCTX-M-15 genes in meat or food-producing animals from South America. The blaCTX-M-8, blaCTX-M-15 andblaCMY-2 genes were transferable in conjugation experiments. The findings of the present study indicate that plasmid-mediated ESBL and AmpC-encoding genes are widely distributed in Brazilian chicken meat.
Resumo:
The objective of this study was to assess the development response of cultivated rice and red rice to different increases in minimum and maximum daily air temperatures, in Santa Maria, Rio Grande do Sul State, Brazil. One hundred years climate scenarios of temperatures 0, +1, +2, +3, +4, and +5ºC, with symmetric and asymmetric increases in minimum and maximum daily air temperatures were created, using the LARS-WG Weather Generator, and a 1969-2003 database. Nine cultivated rice genotypes (IRGA 421, IRGA 416, IRGA 417, IRGA 420, BRS 7 TAIM, BR-IRGA 409, EPAGRI 109, EEA 406 and a hybrid), and two red rice biotypes (awned black hull-ABHRR, and awned yellow hull-AYHRR) were used. The dates of panicle differentiation (R1), anthesis (R4), and all grains with brown hulls (R9) were estimated with a nonlinear simulation model. Overall, the duration of the emergence-R1 phase decreased, whereas the duration of the R1-R4 and R4-R9 phases most often increased, as temperature increased in the climate change scenarios. The simulated rice development response to elevated temperature was not the same, when the increase in minimum and maximum temperature was symmetric or asymmetric.
Resumo:
Even though resistance is the most promising tactic for root-knot nematode management on soybean (Glycine max), virulent biotypes may occur and be selected on specific resistant plant genotypes. In the present study, reproduction rate of Meloidogyne arenaria race 1 increased after four sequences of continuous culture of the parasite on resistant soybean genotypes.
Resumo:
Reverse transcriptase (RT) sequence analysis is an important technique used to detect the presence of transposable elements in a genome. Putative RT sequences were analyzed in the genome of the pathogenic fungus C. perniciosa, the causal agent of witches' broom disease of cocoa. A 394 bp fragment was amplified from genomic DNA of different isolates of C. perniciosa belonging to C-, L-, and S-biotypes and collected from various geographical areas. The cleavage of PCR products with restriction enzymes and the sequencing of various RT fragments indicated the presence of several sequences showing transition events (G:C to A:T). Southern blot analysis revealed high copy numbers of RT signals, forming different patterns among C-, S-, and L-biotype isolates. Sequence comparisons of the predicted RT peptide indicate a close relationship with the RT protein from thegypsy family of LTR-retrotransposons. The possible role of these retrotransposons in generating genetic variability in the homothallic C. perniciosa is discussed.
Resumo:
Herbicide resistance was reported in Brazil almost ten years ago. One of the main weeds with herbicide resistance is wild poinsettia (Euphorbia heterophylla). This work evaluates the distribution of ALS-resistant E. heterophylla in two states in southern Brazil and determines the major contributing management causes for weed resistance selection in the area. E. heterophylla seeds from 148 sites located in Paraná and Rio Grande do Sul were sampled during 2001 and 2002. Farmers provided specific site data for weed control, tillage system, crop rotation and harvesting operations during previous years. ALS resistant E. heterophylla biotypes were found widely distributed in the survey area. Data analysis suggests seed dissemination is unlikely to explain the widespread distribution of resistance. The most probable factor for the selection of the resistant E. heterophylla is the persistent high use of ALS-inhibiting herbicides over time. Indirect evidence is presented demonstrating the need to educate legislators and farmers about the importance of herbicide mixtures as a strategy to prevent herbicide resistance.
Resumo:
Herbicides have simplified weed control, but the use of herbicides, besides being costly, resulted in the selection of herbicide-resistant weed biotypes and has become an environmental contamination factor. Herbicide use reduction is one of the goals of modern agriculture, with several alternatives being investigated, including intercropping. The objective of this study was to evaluate the effects of cowpea and corn cultivar intercropping on weed control and corn green-ear (immature ears with 80% humidity grains) and grain yield. A completely randomized block design with split-plots and four replications was used. AG 1051, AG 2060 and PL 6880 corn cultivars (assigned to plots) were submitted to the four treatments: no weeding, two hoe-weeding (22 and 41 days after planting), and intercropping with cowpea (BR 14 and IPA 206 cultivars, with indeterminate growth). The cowpea was planted (with corn planting) between the corn rows, in pits 1.0 m apart, with two plants per pit. The corn cultivars did not differ from each other as to weed density (WD), fresh above-ground weed biomass (WB), green-ear yield and grain yields. Higher WD and WB mean values were found in no weeding subplots; lower mean values in two hoe-weeding subplots; and intermediate mean values in intercropped subplots, indicating that cowpea plants had, to a certain extent, control over weeds. The no-weeded plots and the intercropped plots had lower green-ear and grain yields. Although the cowpea cultivars had a certain control over weeds (mean reductions of 22.5 and 18.3%, in terms of green matter density and weight of the above-ground part of weeds, respectively), they also competed against the corn plants, leading to yield reduction (mean reductions of 17.0 and 32% in green ear and grain yield, respectively). The cowpea cultivars did not produce grain, certainly due to the strong competition exerted by the corn and weeds on cowpea plants.
Resumo:
Glyphosate is an herbicide that inhibits the enzyme 5-enolpyruvyl-shikimate-3-phosphate synthase (EPSPs) (EC 2.5.1.19). EPSPs is the sixth enzyme of the shikimate pathway, by which plants synthesize the aromatic amino acids phenylalanine, tyrosine, and tryptophan and many compounds used in secondary metabolism pathways. About fifteen years ago it was hypothesized that it was unlikely weeds would evolve resistance to this herbicide because of the limited degree of glyphosate metabolism observed in plants, the low resistance level attained to EPSPs gene overexpression, and because of the lower fitness in plants with an altered EPSPs enzyme. However, today 20 weed species have been described with glyphosate resistant biotypes that are found in all five continents of the world and exploit several different resistant mechanisms. The survival and adaptation of these glyphosate resistant weeds are related toresistance mechanisms that occur in plants selected through the intense selection pressure from repeated and exclusive use of glyphosate as the only control measure. In this paper the physiological, biochemical, and genetic basis of glyphosate resistance mechanisms in weed species are reviewed and a novel and innovative theory that integrates all the mechanisms of non-target site glyphosate resistance in plants is presented.