20 resultados para base temperature
Resumo:
The present study utilized thermogravimetry (TG) and optical emission spectrometry with inductively coupled plasma (ICP/OES) to determine the amount of calcium in calcium lactate tablets used in the treatment of osteoporosis. Thermogravimetry results indicated that the decomposition temperature of CaCO3 occurred at 603.9 and 609.4 ºC in the samples of calcium lactate and tablets, respectively. The calcium content obtained by TG for the tablets sample showed a similar result to that disclosed by ICP-OES, indicating a value of 8.93% for both techniques.
Resumo:
Cobalt or iron oxides supported or not on zeolite Hbeta were prepared and evaluated in the reduction reaction of NO by CO in presence of O2, SO2 or H2O. XRD results evidenced the Hbeta structure and the formation of Co3O4 and Fe2O3. TPR-H2 analysis showed complete reduction of cobalt oxide at lower temperatures than for iron oxide. The catalysts are quite active and the activity depends on the reaction temperature. The highest conversions rates were observed for pure iron oxide, which can be a relatively low cost catalyst for reduction of NO by CO, with high selectivity towards the N2 formation.
Resumo:
Synthesis, spectral identification, and magnetic properties of three complexes of Ni(II), Cu(II), and Zn(II) are described. All three compounds have the general formula [M(L)2(H2O)2], where L = deprotonated phenol in the Schiff base 2-((z)-(3-methylpyridin-2-yleimino)methyl)phenol. The three complexes were synthesized in a one-step synthesis and characterized by elemental analysis, Fourier transform infrared spectroscopy, electronic spectra, X-ray diffraction (XRD), and room temperature magnetic moments. The Cu(II) and Ni(II) complexes exhibited room temperature magnetic moments of 1.85 B.M. per copper atom and 2.96 B.M. per nickel atom. The X-band electron spin resonance spectra of a Cu(II) sample in dimethylformamide frozen at 77 K (liquid nitrogen temperature) showed a typical ΔMS = ± 1 transition. The complexes ([M(L)2(H2O)2]) were investigated by the cyclic voltammetry technique, which provided information regarding the electrochemical mechanism of redox behavior of the compounds. Thermal decomposition of the complexes at 750 ºC resulted in the formation of metal oxide nanoparticles. XRD analyses indicated that the nanoparticles had a high degree of crystallinity. The average sizes of the nanoparticles were found to be approximately 54.3, 30.1, and 44.4 nm for NiO, CuO, and ZnO, respectively.
Resumo:
Two simple sensitive and reproducible spectrophotometric methods have been developed for the determination of metronidazole either in pure form or in their tablets. The proposed methods are based on the reduction of the nitro group to amino group of the drug. The reduction of metronidazole was carried out with zinc powder and 5 N hydrochloric acid at room temperature in methanol. The resulting amine was then subjected to a condensation reaction with aromatic aldehyde namely, vanillin and p-dimethyl amino benzaldehyde (PDAB) to yield yellow colored Schiff's bases. The formed Schiff's bases are quantified spectrophotometrically at their absorption maxima at 422 nm for vanillin and 494 nm for PDAB. Beer's law was obeyed in the concentration ranges 10 to 65 µg mL-1 and 5 to 40 µg mL-1 with a limit of detection (LOD) of 0.080 µg mL-1 and 0.090 µg mL-1 for vanillin and PDAB, respectively. The mean percentage recoveries were found to be 100.05 ± 0.37 and 99.01 ± 0.76 for the two methods respectively. The proposed methods were successfully applied to determine the metronidazole in their tablet formulations and the results compared favorably to that of reference methods. The proposed methods are recommended for quality control and routine analysis.
Resumo:
The objective of the present study was to determine the effects of hypoxia and temperature on the cardiovascular and respiratory systems and plasma glucose levels of the winter bullfrog Rana catesbeiana. Body temperature was maintained at 10, 15, 25 and 35oC for measurements of breathing frequency, heart rate, arterial blood pressure, metabolic rate, plasma glucose levels, blood gases and acid-base status. Reducing body temperature from 35 to 10oC decreased (P<0.001) heart rate (bpm) from 64.0 ± 3.1 (N = 5) to 12.5 ± 2.5 (N = 6) and blood pressure (mmHg) (P<0.05) from 41.9 ± 2.1 (N = 5) to 33.1 ± 2.1 (N = 6), whereas no significant changes were observed under hypoxia. Hypoxia-induced changes in breathing frequency and acid-base status were proportional to body temperature, being pronounced at 25oC, less so at 15oC, and absent at 10oC. Hypoxia at 35oC was lethal. Under normoxia, plasma glucose concentration (mg/dl) decreased (P<0.01) from 53.0 ± 3.4 (N = 6) to 35.9 ± 1.7 (N = 6) at body temperatures of 35 and 10oC, respectively. Hypoxia had no significant effect on plasma glucose concentration at 10 and 15oC, but at 25oC there was a significant increase under conditions of 3% inspired O2. The arterial PO2 and pH values were similar to those reported in previous studies on non-estivating Rana catesbeiana, but PaCO2 (37.5 ± 1.9 mmHg, N = 5) was 3-fold higher, indicating increased plasma bicarbonate levels. The estivating bullfrog may be exposed not only to low temperatures but also to hypoxia. These animals show temperature-dependent responses that may be beneficial since during low body temperatures the sensitivity of most physiological systems to hypoxia is reduced