83 resultados para arbuscular-mycorrhizal
Resumo:
The experiment was carried out on unsterilized field soil with low phosphorus availability with the objective of examining the effect of cultural practices on mycorrhizal colonization and growth of common bean. The treatments were: three pre-crops (maize, wheat and fallow) followed by three soil management practices ("ploughing", mulching and bare fallow without "ploughing" during the winter months). After the cultural practices, Phaseolus vulgaris cv. Canadian Wonder was grown in this soil. Fallowing and soil disturbance reduced natural soil infectivity. Mycorrhizal infection of the bean roots occurred more rapidly in the recently cropped soil than in the fallow soil. Prior cropping with a strongly mycorrhizal plant (maize) increased infectivity even further.
Resumo:
Soil is a very heterogeneous environment that allows the establishment of wide range of microorganisms populations, whose balance is affected by biotic and abiotic factors. This study has aimed to assess the effect of doses of mesotrione and fluazifop-p-butyl herbicides and two assessment periods on microbial activity and biomass of soil cultivated with cassava Cacau-UFV cultivar, besides the root colonization by arbuscular mycorrhizal fungi. Two trials were conducted in a protected environment where was realized post-emergence application of mesotrione in the doses of 72, 108, 144 and 216 g ha-1 and fluazifop-p-butyl in the doses of 100, 150, 200 and 300 g ha-1, besides a control without application. Soil samples were collected for determination of soil respiratory rate (RR), microbial biomass carbon (MBC), metabolic quotient (qCO2), and colonization of roots by arbuscular mycorrhizal fungi at the 30 and 60 days after applications (DAA) of the herbicides. Fluazifop-p-butyl increased the RR, MBC and the percentage of cassava roots colonized by mycorrhizal fungi in the assessment performed at 60 DAA. The larger effects of mesotrione on soil microbial indicators were up to 30 DAA, being the changes minimized at 60 DAA. It is concluded that the herbicides alter the soil microbial indicators, with effects dependent of the product, of dose applied and also of the period of assessment.
Resumo:
ABSTRACT The indiscriminate use of mineral fertilizers in papaya orchards has increased production costs, and the use of arbuscular mycorrhizal fungi is a promising alternative to reduce such expenses. Therefore, the present research aimed at studying the efficiency of arbuscular mycorrhizal fungi (AMF) on dry matter and nutrient accumulation in Sunrise Solo papaya seedlings, by applying doses of P2O5 (triple superphosphate) that are harmful to the symbiosis. The experiment was carried out in a protected environment and was set up in a randomized block design with four replications, and consisted of four P2O5 doses (0, 672, 1386 and 2100 mg dm-3), three mycorrhizal fungi species (Gigaspora margarita, Entrophospora colombiana and Scutellospora heterogama) and the control treatment (mycorrhiza-free). Shoot and root dry matter as well as nitrogen, phosphorus and potassium contents in leaf and root tissues were assessed. Mycorrhizal inoculation promoted a 30% increase in shoot dry matter in relation to the control treatment. Mycorrhizal fungi promoted increases in leaf and root nitrogen content up to 672 mg dm-3 P2O5. Inoculation of E. colombiana favored the highest gains in root and shoot dry matter. P2O5 fertilization increased foliar and root phosphorus content.
Resumo:
The objective of this experiment was to quantify the extramatrical mycelium of the arbuscular mycorrhizal (AM) fungus Glomus etunicatum (Becker & Gerdemann) grown on maize (Zea mays L. var. Piranão) provided with various levels of phosphate fertilizer and harvested at 30, 60 and 90 days after planting (DAP). Total extramatrical mycelium (TEM) was extracted from soil using a modified membrane filtration method, followed by quantification using a grid intersection technique. Active extramatrical mycelium (AEM) proportion was determined using an enzymatic method which measured dehydrogenase activity by following iodonitrotetrazolium reduction. At low levels of added P, there was relatively less TEM than at high levels of added P, but the AEM proportion at low soil P availability was significantly greater than at high soil P.
Resumo:
The objective of this work was to evaluate the effect of coffee (Coffea arabica L.) population densities on the chemical and microbiological properties of an Oxisol. The work was carried out on soil samples of 0-20 cm depth originated from an experimental site which had been used for coffee tree spacing studies during 15 years, in Paraná State, Brazil. Eight coffee tree populations were evaluated: 7143, 3571, 2381, 1786, 1429, 1190, 1020, and 893 trees/ha. Increasing plant population increased soil pH, exchangeable Ca, Mg, K, extractable P, organic carbon, moisture content and coffee root colonization by vesicular arbuscular mycorrhizal fungi, and decreased exchangeable Al and microbial biomass. Such results were attributed to better erosion control, improved plant residue management and nutrient cycling, and decreased leaching losses. Increasing coffee tree population per unit of area has shown to be an important reclamation recuperation strategy for improving fertility of the acid soils in Paraná, Brazil.
Resumo:
This work evaluated the kinetics as well as the retention capacity of Cu, Zn, Cd, and Pb by arbuscular mycorrhizal fungi (AMF) mycelium. The metal retention is a fast process with Cu being retained 3, 30, and 60 times faster than Zn, Cd, and Pb, respectively. Metal retention capacity varied amongst the different tested AMF species and decreased in the following order: Cu>Zn>>Cd>Pb. The Glomus clarum mycelium showed the highest retention capacity for Cu, Cd and Pb, whereas Zn was mostly retained by Gigaspora gigantea mycelium. The simultaneous application of all tested metals in solution decreased Cu and Zn retention by AMF mycelium. The high retention capacity of Cu and Zn by mycelium of G. clarum and G. gigantea suggests a promising use of these isolates in phytoremediation.
EVALUATION OF SUBSTRATES AND AMF SPORULATION IN THE PRODUCTION OF SEEDLINGS OF NATIVE FOREST SPECIES
Resumo:
ABSTRACT The objective of this study was to evaluate organic substrates in the production of canafistula (Peltophorum dubium) (Spreng.) Taub, cutieira (Joannesiaprinceps Vell.), jatoba (Hymenaea courbaril L.) and rubber tree (Hevea brasiliensis M. Arg.) seedlings, native trees with potential use in forest restoration programs. The design was completely randomized with 10 substrate formulations with 4 repetitions of 3 plants for the four species. The evaluated substrates consisted of soil, bovine manure (BM), poultry manure (PM), chemical fertilizer (CF) and sand, in different proportions. The experiment was concluded at the end of 180 days for canafistula, cutieira and rubber and 210 days for jatoba. At the end of these periods, the root (RDM), shoot (SDM) and total (TDM) the dry matters of the seedlings were determined. Quantification of AMF spores and normalization between samples through SPORES/RDM correction were also performed. The Scott-Knott test at 5% probability was applied. Regarding biomass production, only canafistula had significant difference among the tested substrates. In relation to sporulation, the highest values were observed in cutieira and rubber tree in substrate containing PM. The substrates composed of 40 or 50% soil + 20% sand + 30% or 40 PM for canafistula; 50% soil + 20% sand + 30% PM for cutieira; and for jatoba and rubber tree 60% soil + 20% sand + 20% PM, enabled the best results in terms of biomass production in seedlings and AMF sporulation.
Resumo:
The competition between weeds and crops is a topic of great interest, since this interaction can cause heavy losses in agriculture. Despite the existence of some studies on this subject, little is known about the importance of soil microorganisms in the modulation of weed-crop interactions. Plants compete for water and nutrients in the soil and the ability of a given species to use the available resources may be directly affected by the presence of some microbial groups commonly found in the soil. Arbuscular mycorrhizal fungi (AMF) are able to associate with plant roots and affect the ability of different species to absorb water and nutrients from the soil, promoting changes in plant growth. Other groups may promote positive or negative changes in plant growth, depending on the identity of the microbial and plant partners involved in the different interactions, changing the competitive ability of a given species. Recent studies have shown that weeds are able to associate with mycorrhizal fungi in agricultural environments, and root colonization by these fungi is affected by the presence of other weeds or crops species. In addition, weeds tend to have positive interactions with soil microorganisms while cultures may have neutral or negative interactions. Competition between weeds and crops promotes changes in the soil microbial community, which becomes different from that observed in monocultures, thus affecting the competitive ability of plants. When grown in competition, weeds and crops have different behaviors related to soil microorganisms, and the weeds seem to show greater dependence on associations with members of the soil microbiota to increase growth. These data demonstrate the importance of soil microorganisms in the modulation of the interactions between weeds and crops in agricultural environments. New perspectives and hypotheses are presented to guide future research in this area.
Resumo:
A. peregrina var. falcata form mutualistic symbiosis with arbuscular mycorrhizal fungus. An anatomical and ultrastructural study was carried out to analyze some aspects of this simbiotic association as well as some root features. The results evidenced the presence of fibers with non-lignified thicked secondary walls in the stele and sparse papillae on root surface. A. peregrina var. falcata mycorrhizas presented features of Arum-type (intercellular hyphae) and Paris-type (extensive coils) arbuscular mycorrhiza. Their general appearance with extraradical hyphae, intracellular coils, intercellular hyphae and arbuscules, is in agreement with arbuscular mycorrhizas of several plants. The ultrastructural observations showed that in intercellular hyphae and arbuscules vacuoles were dominant and that in rough endoplasmatic reticulum and small vesicles seems to be associated with arbuscule senescence process.
Resumo:
The objective of this work was to evaluate the response of rangpur lime (Citrus limonia) to arbuscular mycorrhiza (Glomus intraradices), under P levels ranging from low to excessive. Plants were grown in three levels of soluble P (25, 200 and 1,000 mg kg-1), either inoculated with Glomus intraradices or left noninoculated, evaluated at 30, 60, 90, 120 and 150 days after transplanting (DAT). Total dry weight, shoot P concentration and specific P uptake by roots increased in mycorrhizal plants with the doses of 25 and 200 mg kg-1 P at 90 DAT. With 1,000 mg kg-1 P, mycorrhizal plants had a transient growth depression at 90 and 120 DAT, and nonmycorrhizal effects on P uptake at any harvesting period. Root colonization and total external mycelium correlated positively with shoot P concentration and total dry weight at the two lowest P levels. Although the highest P level decreased root colonization, it did not affect total external mycelium to the same extent. As a result, a P availability imbalance affected negatively the mycorrhizal symbiosis and, consequently, the plant growth.
Resumo:
The aim of this study was to evaluate the effect of sucrose concentration in the culture medium on growth and on the establishment of mycorrhizas during the acclimatization of pineapple cv. Pérola. The plantlets were micropropagated in MS culture medium with 0, 10, 20 and 30 g L-1 of sucrose and then they were acclimatized during 12 weeks under greenhouse conditions, in a sandy soil - compost mixture, uninoculated or inoculated with a Rhizophagus clarus isolate. Plantlets from the culture medium with 20 g and 30 g of sucrose L-1 showed higher shoot and root biomass than those from sugar-free medium. Mycorrhizal colonization was lower in plantlets micropropagated in sucrose-free medium, but the intensity of arbuscules did not differ among treatments. In the 12-week period of acclimatization, mycorrhizal colonization had no effect on plant biomass.
Resumo:
Estudou-se o efeito da inoculação com o fungo micorrízico arbuscular (FMA), Glomus macrocarpum, da fumigação do substrato e da adição de fósforo solúvel (60, 120, 240 e 480 mg kg-1 de P no solo) sobre as variáveis altura, número de folhas e diâmetro do caule de plantas de mamoeiro cv. Sunrise Solo.O FMA edoses crescentes de fósforo, isoladamente, exerceram efeitos significativos sobre essas variáveis. Não houve efeito significativo do fator fumigação do substrato. O efeito da inoculação foi mais acentuado no tratamento com adição de 60 mg kg-1 de P no solo. A inoculação com G. macrocarpum reduziu a necessidade de fósforo para o mamoeiro, tanto que as variáveis estudadas em plantas inoculadas na ausência de adubação fosfática não diferiram de plantas não inoculadas em substrato adicionado de mais de 240 mg kg-1 de P no solo.
Resumo:
Existem divergências sobre o efeito do fungo micorrízico arbuscular (FMA) na absorção de metais pesados pelas plantas. Isso pode ser atribuído não só às diferenças na disponibilidade do metal no solo, espécie de FMA e de planta, mas também às possíveis interações que ocorrem entre estes e os demais fatores ambientais. Realizou-se um experimento em casa de vegetação, com a finalidade de avaliar o efeito da inoculação de FMAe da saturação por bases do solo sobre o crescimento, nutrição e absorção de Pb em soja crescida em um Latossolo Vermelho-Amarelo. Os tratamentos consistiram de inoculação, ou não, de Glomus macrocarpum, duas doses de calcário, elevando a saturação por bases do solo a 63 e 82 %, e cinco doses de Pb (0; 7,5; 37,5; 150 e 300 mg dm-3), utilizando-se como fonte Pb(NO3)2. A inoculação do FMA aumentou a produção de matéria seca da parte aérea das plantas, as quais também apresentaram maiores teores de P e maiores quantidades acumuladas de P, Ca, Mg, Mn, Fe e Zn. A produção de matéria seca da soja micorrizada reduziu linearmente com o aumento da dose de Pb adicionada, em ambas as saturações por bases. No solo com menor V %, a colonização radicular pelo FMA diminuiu 40 % na maior dose de Pb adicionada, o teor de Pb na parte aérea da soja foi cinco vezes maior e as plantas micorrizadas apresentaram um teor de Pb 30 % menor do que as não micorrizadas. A adição de Pb afetou tanto o estabelecimento quanto o desempenho da simbiose. O FMA teve papel relevante na diminuição da concentração do Pb na parte aérea da soja, no solo com menor saturação por bases, conferindo tolerância à planta em uma condição de excesso de metal pesado no solo.
Resumo:
O objetivo deste trabalho foi avaliar os efeitos de micorriza arbuscular, do estado nutricional de P da planta e de concentrações crescentes de P em solução nutritiva na toxidez de Zn para Trema micrantha (L.) Blum. Em um primeiro experimento, mudas de trema foram formadas em substrato que continha doses crescentes de P [0, 100, 200 e 400 mg dm-3 na forma de Ca(H2PO4)2] e um tratamento de inoculação com Glomus etunicatum (Ge). Após crescimento por 60 dias, as mudas foram transferidas para vasos com solução nutritiva de Clark, que continha 2, 75, 150 e 225 µmol L-1 de Zn, e mantidas por mais 40 dias, quando foram colhidas e avaliadas. Os efeitos do P na amenização da fitotoxidez de Zn foram avaliados em outro experimento, aplicando-se, simultaneamente e de forma combinada em solução, doses de P (0,07; 0,5; 1 e 2 mmol L-1 fornecido por diferentes fontes) e de Zn (2, 75, 150 e 225 µmol L-1 na forma de ZnSO4.7H2O), nas quais foram cultivadas mudas de trema por 40 dias. Houve acentuada inibição no crescimento e na colonização micorrízica da trema em doses elevadas de Zn em solução (150 e 225 µmol L-1). Constatou-se que a melhoria da nutrição fosfática reduziu a translocação do Zn das raízes para a parte aérea, mas isto, assim como a colonização micorrízica, não resultou em favorecimento do crescimento da planta em condições de excesso deste metal em solução. No segundo experimento, verificou-se que a elevação na concentração de P em solução nutritiva promoveu melhoria no estado nutricional de P, conferindo proteção à planta do excesso de Zn. Como a especiação química da solução indicou que a aplicação de P não interferiu, de modo significativo, nas formas de Zn em solução, os resultados indicam que a ação amenizante do P ocorre na planta, possivelmente reduzindo a translocação do Zn das raízes para a parte aérea.
Resumo:
Cover crops may difffer in the way they affect rhizosphere microbiota nutrient dynamics. The purpose of this study was to evaluate the effect of mycorrhizal and non-mycorrhizal cover crops on soil phosphatase activity and its persistence in subsequent crops. A three-year experiment was carried out with a Typic Quartzipsamment. Treatments were winter species, either mycorrhizal black oat (Avena strigosa Schreb) or the non-mycorrhizal species oilseed radish (Raphanus sativus L. var. oleiferus Metzg) and corn spurry (Spergula arvensis L.). The control treatment consisted of resident vegetation (fallow in the winter season). In the summer, a mixture of pearl millet (Pennisetum americanum L.) with sunnhemp (Crotalaria juncea L.) or with soybean (Glycine max L.) was sown in all plots. Soil cores (0-10 cm) and root samples were collected in six growing seasons (winter and summer of each year). Microbial biomass P was determined by the fumigation-extraction method and phosphatase activity using p-nitrophenyl-phosphate as enzyme substrate. During the flowering stage of the winter cover crops, acid phosphatase activity was 30-35 % higher in soils with the non-mycorrhizal species oilseed radish, than in the control plots, regardless of the amount of P immobilized in microbial biomass. The values of enzyme activity were intermediate in the plots with corn spurry and black oat. Alkaline phosphatase activity was 10-fold lower and less sensitive to the treatments, despite the significant relationship between the two phosphatase activities. The effect of plant species on the soil enzyme profile continued in the subsequent periods, during the growth of mycorrhizal summer crops, after completion of the life cycle of the cover crops.