29 resultados para anaerobic conditions in sewer systems
Resumo:
Copper and zinc are common elements in paint residues and can be toxic to estuarine organisms. This study aims to determine the labile dissolved and labile particulate fractions (LPFs) of copper and zinc in the estuarine waters of a shipyard in southern Brazil under different salinity levels and in different seasons. The labile dissolved fraction was determined using the diffusive gradient in thin-film (DGT) technique. The variations in DGT-Cu (0.22-1.05 µg L-1), DGT-Zn (0.54-18.39 µg L-1), LPF-Cu (1.22-3.77 µg g-1), and LPF-Zn (4.29-19.12 µg g-1) concentration were related to changes in their physico-chemical parameters and as a result of boat maintenance activities.
Resumo:
The objective of this work was to define the optimal conditions for invertase assay, seeking to determine the ideal parameters for the different isoenzymes of leaf and bark tissues in adult rubber trees. Assays of varying pH, sucrose concentration and temperature of the reaction medium were conducted for the two investigated isoenzymes. The results pointed out the existence of two different pH related isoforms for the two analyzed tissues, with an isoenzyme being more active at pH 5,5 and the other at neutral/alkaline pH. Leaf blade isoenzymes presented similar values for substrate concentration, whereas the bark isoenzyme presented maximum values below those previously reported. The assays at different temperatures presented similar values for leaf isoenzymes, though they have differed significantly among the obtained values.
Resumo:
A numerical procedure for solving the nongray radiative transfer equation (RTE) in two-dimensional cylindrical participating media is presented. Nongray effects are treated by using a narrow-band approach. Radiative emission from CO, CO2, H2O, CH4 and soot is considered. The solution procedure is applied to study radiative heat transfer in a premixed CH4-O2, laminar, flame. Temperature, soot and IR-active species molar fraction distributions are allowed to vary in the axial direction of the flame. From the obtained results it is possible to quantify the radiative loss in the flame, as well as the importance of soot radiation as compared to gaseous radiation. Since the solution procedure is developed for a two-dimensional cylindrical geometry, it can be applied to other combustion systems such as furnaces, internal combustion engines, liquid and solid propellant combustion.
Resumo:
This paper examines two passive techniques for vibration reduction in mechanical systems: the first one is based on dynamic vibration absorbers (DVAs) and the second uses resonant circuit shunted (RCS) piezoceramics. Genetic algorithms are used to determine the optimal design parameters with respect to performance indexes, which are associated with the dynamical behavior of the system over selected frequency bands. The calculation of the frequency response functions (FRFs) of the composite structure (primary system + DVAs) is performed through a substructure coupling technique. A modal technique is used to determine the frequency response function of the structure containing shunted piezoceramics which are bonded to the primary structure. The use of both techniques simultaneously on the same structure is investigated. The methodology developed is illustrated by numerical applications in which the primary structure is represented by simple Euler-Bernoulli beams. However, the design aspects of vibration control devices presented in this paper can be extended to more complex structures.
Resumo:
The accuracy of modelling of rotor systems composed of rotors, oil film bearings and a flexible foundation, is evaluated and discussed in this paper. The model validation of different models has been done by comparing experimental results with numerical results by means. The experimental data have been obtained with a fully instrumented four oil film bearing, two shafts test rig. The fault models are then used in the frame of a model based malfunction identification procedure, based on a least square fitting approach applied in the frequency domain. The capability of distinguishing different malfunctions has been investigated, even if they can create similar effects (such as unbalance, rotor bow, coupling misalignment and others) from shaft vibrations measured in correspondence of the bearings.
Resumo:
ALS-inhibiting herbicides usually provide adequate weed control in irrigated rice fields. After consecutive years of use, the Cyperaceae species, globe fringerush (Fimbristylis miliacea) began to show resistance to ALS (acetolactate synthase) inhibitors. Globe fringerush is one of the most problematic herbicide-resistant weeds in irrigated rice in the state of Santa Catarina in the South of Brazil. The objective of this research was to examine cross resistance of globe fringerush to ALS inhibitors, under field conditions. Two experiments were conducted in a rice field naturally infested with ALS-resistant globe fringerush in Santa Catarina, in the 2008/09 and 2009/10 cropping seasons. The experimental units were arranged in randomized complete block design, with five replicates, consisting of two factors (herbicide and dose) in a 4 x 5 factorial arrangement. ALS herbicides included bispyribac-sodium, ethoxysulfuron, pyrazosulfuron-ethyl and penoxsulam. Six-leaf globe fringerush was sprayed with herbicide doses of 0, 0.5, 1, 2 and 4X the recommended doses in a spray volume of 200 L ha-1. The number of rice culm, filled and sterile grains, plant height, dry shoot biomass and grain yield were recorded. Globe fringerush control was evaluated 28 and 70 days after herbicide application (DAA); shoots were harvested at 13 weeks after herbicide application and dry weight recorded. Competition with globe fringerush reduced the number of culm and rice grain yield. The globe fringerush biotype in this field was resistant to all ALS herbicides tested. Penoxsulam had the highest level of activity among treatments at 28 and 70 DAA, but the control level was only 50% and 42%, respectively, in the second year of assessment. This was not enough to prevent rice yield loss. Alternative herbicides and weed control strategies are necessary to avoid yield losses in rice fields infested with ALS-resistant biotypes of globe fringerush.
Resumo:
ABSTRACT The increase in the area planted with Crotalaria spectabilishas occurred by several factors, highlighting the potential to reduce the nematodes, nitrogen fixation and the high production of biomass. By becoming a species sown as a crop, it is necessary to control the weeds that coexist with showy crotalaria. This change in the use of this crop creates the possibility of this specie becoming a weed. The aim of this study was to assess the potential use of herbicides applied in preemergence and postemergence of C.spectabilisfor different purposes (control of volunteer and selectivity plants). Three experiments were installed in a greenhouse (two with herbicides applied in preemergence - in soils with distinct textural categories; and one experiment with herbicides applied in postemergence). The results of the experiments with herbicides applied in preemergence showed that: amicarbazone, atrazine, diuron, metribuzin, prometryn, fomesafen and sulfentrazone showed effectiveness for control of C.spectabilis in clayey soil. Besides these, flumioxazin and isoxaflutole also showed potential to be used in the control of showy crotalaria in soils with loam texture. In relation to the postemergence herbicides, atrazine, diuron, prometryn, flumioxazin, fomesafen, lactofen, saflufenacil, amonio-glufosinate and glyphosate can be used aiming the chemical control of C.spectabilis. Herbicides chlorimuron-ethyl, diclosulan, imazethapyr, pyrithiobac-sodium, trifloxysulfuron-sodium, clomazone, pendimethalin, S-metolachlor and trifluralin applied in preemergence, and imazethapyr, pyrithiobac-sodium, flumiclorac, bentazon and clethodim applied in postemergence caused low levels of injury to C.spectabilis plants, making necessary the development of new searches to ensure the selectivity of these products.
Resumo:
Leaf CO2 assimilation (A) as a function of photosynthetic photon flux density (Q) or intercellular CO2 concentration (Ci) and chlorophyll fluorescence measurements were carried out on four tropical woody species growing in forest gap and understorey (Bauhinia forficata Link. and Guazuma ulmifolia Lam. as pioneers, and Hymenaea courbaril L. and Esenbeckia leiocarpa Engl. as non-pioneers). Chlorophyll fluorescence indicated similar acclimation capacities of photochemical apparatus to contrasting light environments irrespective to plant species. Maximum CO2 assimilation and quantum yield derived from A/Q curves indicated higher photosynthetic capacity in pioneer than in non-pioneer species in forest gap. However, the differences among species did not show a straightforward relation with their successional status regarding data derived from A/Q curves under understorey conditions. Both successional groups are able to sustain positive carbon balance under contrasting natural light availabilities, modifying photochemical and biochemical photosynthetic traits with similar phenotypic plasticity capacity.
Resumo:
The aim of the present study was to compare the modulation of heart rate in a group of postmenopausal women to that of a group of young women under resting conditions on the basis of R-R interval variability. Ten healthy postmenopausal women (mean ± SD, 58.3 ± 6.8 years) and 10 healthy young women (mean ± SD, 21.6 ± 0.82 years) were submitted to a control resting electrocardiogram (ECG) in the supine and sitting positions over a period of 6 min. The ECG was obtained from a one-channel heart monitor at the CM5 lead and processed and stored using an analog to digital converter connected to a microcomputer. R-R intervals were calculated on a beat-to-beat basis from the ECG recording in real time using a signal-processing software. Heart rate variability (HRV) was expressed as standard deviation (RMSM) and mean square root (RMSSD). In the supine position, the postmenopausal group showed significantly lower (P<0.05) median values of RMSM (34.9) and RMSSD (22.32) than the young group (RMSM: 62.11 and RMSSD: 49.1). The same occurred in the sitting position (RMSM: 33.0 and RMSSD: 18.9 compared to RMSM: 57.6 and RMSSD: 42.8 for the young group). These results indicate a decrease in parasympathetic modulation in postmenopausal women compared to young women which was possibly due both to the influence of age and hormonal factors. Thus, time domain HRV proved to be a noninvasive and sensitive method for the identification of changes in autonomic modulation of the sinus node in postmenopausal women.
Resumo:
The break point of the curve of blood lactate vs exercise load has been called anaerobic threshold (AT) and is considered to be an important indicator of endurance exercise capacity in human subjects. There are few studies of AT determination in animals. We describe a protocol for AT determination by the "lactate minimum test" in rats during swimming exercise. The test is based on the premise that during an incremental exercise test, and after a bout of maximal exercise, blood lactate decreases to a minimum and then increases again. This minimum value indicates the intensity of the AT. Adult male (90 days) Wistar rats adapted to swimming for 2 weeks were used. The initial state of lactic acidosis was obtained by making the animals jump into the water and swim while carrying a load equivalent to 50% of body weight for 6 min (30-s exercise interrupted by a 30-s rest). After a 9-min rest, blood was collected and the incremental swimming test was started. The test consisted of swimming while supporting loads of 4.5, 5.0, 5.5, 6.0 and 7.0% of body weight. Each exercise load lasted 5 min and was followed by a 30-s rest during which blood samples were taken. The blood lactate minimum was determined from a zero-gradient tangent to a spline function fitting the blood lactate vs workload curve. AT was estimated to be 4.95 ± 0.10% of body weight while interpolated blood lactate was 7.17 ± 0.16 mmol/l. These results suggest the application of AT determination in animal studies concerning metabolism during exercise.
Exercise may cause myocardial ischemia at the anaerobic threshold in cardiac rehabilitation programs
Resumo:
Myocardial ischemia may occur during an exercise session in cardiac rehabilitation programs. However, it has not been established whether it is elicited when exercise prescription is based on heart rate corresponding to the anaerobic threshold as measured by cardiopulmonary exercise testing. Our objective was to determine the incidence of myocardial ischemia in cardiac rehabilitation programs according to myocardial perfusion SPECT in exercise programs based on the anaerobic threshold. Thirty-nine patients (35 men and 4 women) diagnosed with coronary artery disease by coronary angiography and stress technetium-99m-sestamibi gated SPECT associated with a baseline cardiopulmonary exercise test were assessed. Ages ranged from 45 to 75 years. A second cardiopulmonary exercise test determined training intensity at the anaerobic threshold. Repeat gated-SPECT was obtained after a third cardiopulmonary exercise test at the prescribed workload and heart rate. Myocardial perfusion images were analyzed using a score system of 6.4 at rest, 13.9 at peak stress, and 10.7 during the prescribed exercise (P < 0.05). The presence of myocardial ischemia during exercise was defined as a difference ≥2 between the summed stress score and summed rest score. Accordingly, 25 (64%) patients were classified as ischemic and 14 (36%) as nonischemic. MIBI-SPECT showed myocardial ischemia during exercise within the anaerobic threshold. The 64% prevalence of ischemia observed in the study should not be looked on as representative of the whole population of patients undergoing exercise programs. Changes in patient care and exercise programs were implemented as a result of our finding of ischemia during the prescribed exercise.
Resumo:
Agricultural soils can act as a source or sink of atmospheric C, according to the soil management. This long-term experiment (22 years) was evaluated during 30 days in autumn, to quantify the effect of tillage systems (conventional tillage-CT and no-till-NT) on the soil CO2-C flux in a Rhodic Hapludox in Rio Grande do Sul State, Southern Brazil. A closed-dynamic system (Flux Chamber 6400-09, Licor) and a static system (alkali absorption) were used to measure soil CO2-C flux immediately after soybean harvest. Soil temperature and soil moisture were measured simultaneously with CO2-C flux, by Licor-6400 soil temperature probe and manual TDR, respectively. During the entire month, a CO2-C emission of less than 30 % of the C input through soybean crop residues was estimated. In the mean of a 30 day period, the CO2-C flux in NT soil was similar to CT, independent of the chamber type used for measurements. Differences in tillage systems with dynamic chamber were verified only in short term (daily evaluation), where NT had higher CO2-C flux than CT at the beginning of the evaluation period and lower flux at the end. The dynamic chamber was more efficient than the static chamber in capturing variations in CO2-C flux as a function of abiotic factors. In this chamber, the soil temperature and the water-filled pore space (WFPS), in the NT soil, explained 83 and 62 % of CO2-C flux, respectively. The Q10 factor, which evaluates CO2-C flux dependence on soil temperature, was estimated as 3.93, suggesting a high sensitivity of the biological activity to changes in soil temperature during fall season. The CO2-C flux measured in a closed dynamic chamber was correlated with the static alkali adsorption chamber only in the NT system, although the values were underestimated in comparison to the other, particularly in the case of high flux values. At low soil temperature and WFPS conditions, soil tillage caused a limited increase in soil CO2-C flux.
Resumo:
The purpose of this paper was to observe the use of bedding (wood shavings) in physiological variables that indicate thermal stress in gestating sows. The experiment was conducted in order to evaluate the effect of two types of floor (concrete and wood shavings). Worse microclimatic conditions were observed in bedding systems (P<0.05), with an increase in temperature and enthalpy of 1.14 ºC and 2.37 kJ.kg dry air-1, respectively. The floor temperature at the dirty area was higher in the bedding presence in comparison to its absence. In spite of the worse microclimatic conditions in the bedding, the rectal temperature did not differ significantly (P>0.05) but the skin surface temperature was higher in the bedding systems. The same occurred with the respiratory rates. The physical characteristics of the floor material influenced the rate of heat loss by conductance. Estimated values were 35.04 and 7.99 W m-2 for the conductive heat loss between the animal and floor for treatments with or without bedding, respectively. The use of bedding in sow rearing has a negative impact on microclimatic conditions, what implies in thermoregulatory damages.
Resumo:
Lipid micro and nanoparticles have been extensively investigated as carriers for hydrophobic bioactives in food systems because they can simultaneously increase the dispersibility of these lipophilic substances and help improve their bioavailability. In this study, lipid microparticles of babacu oil and denatured whey protein isolate were produced, and their ability to protect quercetin against degradation was evaluated over 30 days of storage. Additionally, the lipid microparticles were subjected to the typical stress conditions of food processing (presence of sucrose, salt, and thermal stresses), and their physico-chemical stability was monitored. The data show that the babacu microparticles efficiently avoided the oxidation of quercetin because 85% of the initial amount of the flavonoid was preserved after 30 days. The particles were notably stable up to a temperature of 70 °C for 10 minutes at relatively high concentrations of salt and sucrose. The type of stirring (mechanical or magnetic) also strongly affected the stability of the dispersions.