40 resultados para all substring common subsequence problem


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Parasitic infection is one of the problems that affect human health, especially in developing countries. In this study, all of the fast food shops, restaurants, and roast meat outlets of Khorramabad (Western Iran) and all the staff employed by them, some 210 people, were selected through a census and their stools were examined for the presence of parasites. The parasitological tests of direct wet-mount, Lugol's iodine staining, formaldehyde-ether sedimentation and Trichrome staining techniques were performed on the samples. The data was analyzed with a chi-square test and logistic regression was selected as the analytical model. The results showed 19 (9%) stool specimens were positive for different intestinal parasites. These intestinal parasites included Giardia lamblia2.9%, Entamoeba coli 4.3%, Blastocystis sp. 1.4%, and Hymenolepis nana 0.5%. There was a significant difference between the presence of a valid health card, awareness of transmission of intestinal parasites, participation in training courses in environmental health with intestinal parasites (p < 0.05). No statistically significant difference was found between the rate of literacy and gender among patients infected with intestinal parasites (p > 0.05). To control parasitic infection in food handlers, several strategies are recommended such as stool examinations every three months, public education, application of health regulations, controlling the validity of health cards and training on parasitic infection transmission. In this regard, the findings of the present study can be used as a basis to develop preventive programs targeting food handlers because the spread of disease via them is a common problem worldwide.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Intestinal parasites are a problem for public health all over the world. The infection with Blastocystis, a protozoan of controversial pathogenicity, is one of the most common among them all. In this study, the occurrence of intestinal parasites, with emphasis on Blastocystis, in patients at the Universidade Federal do Triângulo Mineiro was investigated in Uberaba (MG) through microscopy of direct smears and fecal concentrates using Ritchie’s method. Feces of 1,323 patients were examined from April 2011 to May 2012. In 28.7% of them at least one intestinal parasite was identified, and the most frequent organisms were Blastocystis spp. (17.8%) and Giardia intestinalis (7.4%). The occurrence of parasitism was higher in children aged 6 -10 years old, and the infection with Blastocystis spp. was higher above the age of six (p < 0.001). The exclusive presence of G. intestinalis and of Blastocystis spp. was observed in 5.4% and 12.2% of the patients, respectively. Regarding patients with diarrheic feces, 8% revealed unique parasitism of Blastocystis spp. Other intestinal parasites observed in children were Ascaris lumbricoides(0.3%) and Entamoeba histolytica/dispar/moshkovskii (1.4%). The Ritchie’s method was more sensitive (92.8%) when compared to direct microscopy (89.8%), with high agreement between them (97.7%, kappa = 0.92). In conclusion, the occurrence of Blastocystis spp. in Uberaba is high and the presence of diarrheic feces with exclusive presence of the parasite of Blastocystis spp. was observed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

INTRODUCTION: This study evaluated the degree of disability, pain levels, muscle strength, and electromyographic function (RMS) in individuals with leprosy. METHODS: We assessed 29 individuals with leprosy showing common peroneal nerve damage and grade 1 or 2 disability who were referred for physiotherapeutic treatment, as well as a control group of 19 healthy participants without leprosy. All subjects underwent analyses of degree of disability, electromyographic tests, voluntary muscle force, and the Visual Analog Pain Scale. RESULTS: McNemar's test found higher levels of grade 2 of disability (Δ = 75.9%; p = 0.0001) among individuals with leprosy. The Mann-Whitney test showed greater pain levels (Δ = 5.0; p = 0.0001) in patients with leprosy who had less extension strength in the right and left extensor hallucis longus muscles (Δ = 1.28, p = 0.0001; Δ = 1.55, p = 0.0001, respectively) and dorsiflexion of the right and left feet (Δ = 1.24, p = 0.0001; Δ = 1.45, p = 0.0001, respectively) than control subjects. The Kruskal-Wallis test showed that the RMS score for dorsiflexion of the right (Δ = 181.66 m·s-2, p = 0.001) and left (Δ = 102.57m·s-2, p = 0.002) feet was lower in patients with leprosy than in control subjects, but intragroup comparisons showed no difference. CONCLUSIONS: Leprosy had a negative influence on all of the study variables, indicating the need for immediate physiotherapeutic intervention in individuals with leprosy. This investigation opens perspectives for future studies that analyze leprosy treatment with physical therapeutic intervention.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

INTRODUCTION: Chagas' disease is a major public health problem in Brazil and needs extensive and reliable information to support consistent prevention and control actions. This study describes the most common causes of death associated with deaths related to Chagas' disease (underlying or associated cause of death). METHODS: Mortality data were obtained from the Mortality Information System of the Ministry of Health (approximately 9 million deaths). We analyzed all deaths that occurred in Brazil between 1999 and 2007, where Chagas' disease was mentioned on the death certificate as underlying or associated cause (multiple causes of death). RESULTS: There was a total of 53,930 deaths related to Chagas' disease, 44,543 (82.6%) as underlying cause and 9,387 (17.4%) as associated cause. The main diseases and conditions associated with death by Chagas' disease as underlying cause included direct complications of cardiac involvement, such as conduction disorders/arrhythmias (41.4%) and heart failure (37.7%). Cerebrovascular disease (13.2%), ischemic heart disease (13.2%) and hypertensive diseases (9.3%) were the main underlying causes of deaths in which Chagas' disease was identified as an associated cause. CONCLUSIONS: Cardiovascular diseases were often associated with deaths related to Chagas' disease. Information from multiple causes of death recorded on death certificates allows reconstruction of the natural history of Chagas' disease and suggests preventive and therapeutic potential measures more adequate and specifics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

INTRODUCTION:Human immunodeficiency virus (HIV) coinfection with Leishmania infantum or Leishmania donovani, the agents of visceral leishmaniasis (or kala-azar), has become a fatal public health problem in the tropics where kala-azar is endemic.METHODS:The clinical presentation of patients with HIV and L. infantum coinfection is described using two unique databases that together produce the largest case series of patients with kala-azar infected with HIV in South America. First, a retrospective study paired the list of all patients with kala-azar from 1994 to 2004 with another of all patients with HIV/AIDS from the reference hospital for both diseases in the City of Teresina, State of Piauí, Brazil. Beginning in 2005 through to 2010 this information was prospectively collected at the moment of hospitalization.RESULTS:During the study, 256 admissions related to 224 patients with HIV/L. infantum coinfection were registered and most of them were males between 20-40 years of age. Most of the 224 patients were males between 20-40 years of age. HIV contraction was principally sexual. The most common symptoms and signs were pallor, fever, asthenia and hepatosplenomegaly. 16.8% of the cohort died. The primary risk factors associated to death were kidney or respiratory failure, somnolence, hemorrhagic manifestations and a syndrome of systemic inflammation. The diagnosis of HIV and kala-azar was made simultaneously in 124 patients.CONCLUSIONS:The urban association between HIV and kala-azar coinfection in South America is worrisome due to difficulty in establishing the diagnosis and higher mortality among the coinfected then those with either disease independently. HIV/L. infantum coinfection exhibits some singular characteristics and due to its higher mortality it requires immediate assistance to patients and greater research on appropriate combination therapy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract INTRODUCTION: Hepatitis C is a public health problem of global dimensions, affecting approximately 200 million people worldwide. The main objective of this study was to estimate the incidence rate of hepatitis C in Brazil during the period between 2001 and 2012. METHODS: An epidemiological, temporal, and descriptive study was performed using data from the Information System for Reportable Diseases. RESULTS: Between 2001 and 2012, a total of 151,056 hepatitis C cases were recorded, accounting for 30.3% of all hepatitis notifications in Brazil. The average gross coefficient for the analysis period was 6.7 new cases per 100,000 inhabitants. The regions with the highest rates were the Southeast region (8.7 new cases/100,000 inhabitants) and the South (13.9 new cases/100,000 inhabitants). There was a predominance of men with respect to the incidence rate (8.0 new cases/100,000 inhabitants) compared to women (5.5 new cases/100,000 inhabitants). Injection drug use was the most common source of infection, and members of the white race, residents of urban areas, and those aged 60 to 64 years had the highest incidences. CONCLUSIONS: Over the last 10 years, the incidence of hepatitis C in Brazil has increased, mainly in the South and Southeast. The adoption of fast, accurate diagnostic methods, together with epidemiological awareness, can facilitate early intervention measures for adequate control of the disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In thee present paper the classical concept of the corpuscular gene is dissected out in order to show the inconsistency of some genetical and cytological explanations based on it. The author begins by asking how do the genes perform their specific functions. Genetists say that colour in plants is sometimes due to the presence in the cytoplam of epidermal cells of an organic complex belonging to the anthocyanins and that this complex is produced by genes. The author then asks how can a gene produce an anthocyanin ? In accordance to Haldane's view the first product of a gene may be a free copy of the gene itself which is abandoned to the nucleus and then to the cytoplasm where it enters into reaction with other gene products. If, thus, the different substances which react in the cell for preparing the characters of the organism are copies of the genes then the chromosome must be very extravagant a thing : chain of the most diverse and heterogeneous substances (the genes) like agglutinins, precipitins, antibodies, hormones, erzyms, coenzyms, proteins, hydrocarbons, acids, bases, salts, water soluble and insoluble substances ! It would be very extrange that so a lot of chemical genes should not react with each other. remaining on the contrary, indefinitely the same in spite of the possibility of approaching and touching due to the stato of extreme distension of the chromosomes mouving within the fluid medium of the resting nucleus. If a given medium becomes acid in virtue of the presence of a free copy of an acid gene, then gene and character must be essentially the same thing and the difference between genotype and phenotype disappears, epigenesis gives up its place to preformation, and genetics goes back to its most remote beginnings. The author discusses the complete lack of arguments in support of the view that genes are corpuscular entities. To show the emharracing situation of the genetist who defends the idea of corpuscular genes, Dobzhansky's (1944) assertions that "Discrete entities like genes may be integrated into systems, the chromosomes, functioning as such. The existence of organs and tissues does not preclude their cellular organization" are discussed. In the opinion of the present writer, affirmations as such abrogate one of the most important characteristics of the genes, that is, their functional independence. Indeed, if the genes are independent, each one being capable of passing through mutational alterations or separating from its neighbours without changing them as Dobzhansky says, then the chromosome, genetically speaking, does not constitute a system. If on the other hand, theh chromosome be really a system it will suffer, as such, the influence of the alteration or suppression of the elements integrating it, and in this case the genes cannot be independent. We have therefore to decide : either the chromosome is. a system and th genes are not independent, or the genes are independent and the chromosome is not a syntem. What cannot surely exist is a system (the chromosome) formed by independent organs (the genes), as Dobzhansky admits. The parallel made by Dobzhansky between chromosomes and tissues seems to the author to be inadequate because we cannot compare heterogeneous things like a chromosome considered as a system made up by different organs (the genes), with a tissue formed, as we know, by the same organs (the cells) represented many times. The writer considers the chromosome as a true system and therefore gives no credit to the genes as independent elements. Genetists explain position effects in the following way : The products elaborated by the genes react with each other or with substances previously formed in the cell by the action of other gene products. Supposing that of two neighbouring genes A and B, the former reacts with a certain substance of the cellular medium (X) giving a product C which will suffer the action, of the latter (B). it follows that if the gene changes its position to a place far apart from A, the product it elaborates will spend more time for entering into contact with the substance C resulting from the action of A upon X, whose concentration is greater in the proximities of A. In this condition another gene produtc may anticipate the product of B in reacting with C, the normal course of reactions being altered from this time up. Let we see how many incongruencies and contradictions exist in such an explanation. Firstly, it has been established by genetists that the reaction due.to gene activities are specific and develop in a definite order, so that, each reaction prepares the medium for the following. Therefore, if the medium C resulting from the action of A upon x is the specific medium for the activity of B, it follows that no other gene, in consequence of its specificity, can work in this medium. It is only after the interference of B, changing the medium, that a new gene may enter into action. Since the genotype has not been modified by the change of the place of the gene, it is evident that the unique result we have to attend is a little delay without seious consequence in the beginning of the reaction of the product of B With its specific substratum C. This delay would be largely compensated by a greater amount of the substance C which the product of B should found already prepared. Moreover, the explanation did not take into account the fact that the genes work in the resting nucleus and that in this stage the chromosomes, very long and thin, form a network plunged into the nuclear sap. in which they are surely not still, changing from cell to cell and In the same cell from time to time, the distance separating any two genes of the same chromosome or of different ones. The idea that the genes may react directly with each other and not by means of their products, would lead to the concept of Goidschmidt and Piza, in accordance to which the chromosomes function as wholes. Really, if a gene B, accustomed to work between A and C (as for instance in the chromosome ABCDEF), passes to function differently only because an inversion has transferred it to the neighbourhood of F (as in AEDOBF), the gene F must equally be changed since we cannot almH that, of two reacting genes, only one is modified The genes E and A will be altered in the same way due to the change of place-of the former. Assuming that any modification in a gene causes a compensatory modification in its neighbour in order to re-establich the equilibrium of the reactions, we conclude that all the genes are modified in consequence of an inversion. The same would happen by mutations. The transformation of B into B' would changeA and C into A' and C respectively. The latter, reacting withD would transform it into D' and soon the whole chromosome would be modified. A localized change would therefore transform a primitive whole T into a new one T', as Piza pretends. The attraction point-to-point by the chromosomes is denied by the nresent writer. Arguments and facts favouring the view that chromosomes attract one another as wholes are presented. A fact which in the opinion of the author compromises sereously the idea of specific attraction gene-to-gene is found inthe behavior of the mutated gene. As we know, in homozygosis, the spme gene is represented twice in corresponding loci of the chromosomes. A mutation in one of them, sometimes so strong that it is capable of changing one sex into the opposite one or even killing the individual, has, notwithstading that, no effect on the previously existing mutual attraction of the corresponding loci. It seems reasonable to conclude that, if the genes A and A attract one another specifically, the attraction will disappear in consequence of the mutation. But, as in heterozygosis the genes continue to attract in the same way as before, it follows that the attraction is not specific and therefore does not be a gene attribute. Since homologous genes attract one another whatever their constitution, how do we understand the lack cf attraction between non homologous genes or between the genes of the same chromosome ? Cnromosome pairing is considered as being submitted to the same principles which govern gametes copulation or conjugation of Ciliata. Modern researches on the mating types of Ciliata offer a solid ground for such an intepretation. Chromosomes conjugate like Ciliata of the same variety, but of different mating types. In a cell there are n different sorts of chromosomes comparable to the varieties of Ciliata of the same species which do not mate. Of each sort there are in the cell only two chromosomes belonging to different mating types (homologous chromosomes). The chromosomes which will conjugate (belonging to the same "variety" but to different "mating types") produce a gamone-like substance that promotes their union, being without action upon the other chromosomes. In this simple way a single substance brings forth the same result that in the case of point-to-point attraction would be reached through the cooperation of as many different substances as the genes present in the chromosome. The chromosomes like the Ciliata, divide many times before they conjugate. (Gonial chromosomes) Like the Ciliata, when they reach maturity, they copulate. (Cyte chromosomes). Again, like the Ciliata which aggregate into clumps before mating, the chrorrasrmes join together in one side of the nucleus before pairing. (.Synizesis). Like the Ciliata which come out from the clumps paired two by two, the chromosomes leave the synizesis knot also in pairs. (Pachytene) The chromosomes, like the Ciliata, begin pairing at any part of their body. After some time the latter adjust their mouths, the former their kinetochores. During conjugation the Ciliata as well as the chromosomes exchange parts. Finally, the ones as the others separate to initiate a new cycle of divisions. It seems to the author that the analogies are to many to be overlooked. When two chemical compounds react with one another, both are transformed and new products appear at the and of the reaction. In the reaction in which the protoplasm takes place, a sharp difference is to be noted. The protoplasm, contrarily to what happens with the chemical substances, does not enter directly into reaction, but by means of products of its physiological activities. More than that while the compounds with Wich it reacts are changed, it preserves indefinitely its constitution. Here is one of the most important differences in the behavior of living and lifeless matter. Genes, accordingly, do not alter their constitution when they enter into reaction. Genetists contradict themselves when they affirm, on the one hand, that genes are entities which maintain indefinitely their chemical composition, and on the other hand, that mutation is a change in the chemica composition of the genes. They are thus conferring to the genes properties of the living and the lifeless substances. The protoplasm, as we know, without changing its composition, can synthesize different kinds of compounds as enzyms, hormones, and the like. A mutation, in the opinion of the writer would then be a new property acquired by the protoplasm without altering its chemical composition. With regard to the activities of the enzyms In the cells, the author writes : Due to the specificity of the enzyms we have that what determines the order in which they will enter into play is the chemical composition of the substances appearing in the protoplasm. Suppose that a nucleoproteln comes in relation to a protoplasm in which the following enzyms are present: a protease which breaks the nucleoproteln into protein and nucleic acid; a polynucleotidase which fragments the nucleic acid into nucleotids; a nucleotidase which decomposes the nucleotids into nucleoids and phosphoric acid; and, finally, a nucleosidase which attacs the nucleosids with production of sugar and purin or pyramidin bases. Now, it is evident that none of the enzyms which act on the nucleic acid and its products can enter into activity before the decomposition of the nucleoproteln by the protease present in the medium takes place. Leikewise, the nucleosidase cannot works without the nucleotidase previously decomposing the nucleotids, neither the latter can act before the entering into activity of the polynucleotidase for liberating the nucleotids. The number of enzyms which may work at a time depends upon the substances present m the protoplasm. The start and the end of enzym activities, the direction of the reactions toward the decomposition or the synthesis of chemical compounds, the duration of the reactions, all are in the dependence respectively o fthe nature of the substances, of the end products being left in, or retired from the medium, and of the amount of material present. The velocity of the reaction is conditioned by different factors as temperature, pH of the medium, and others. Genetists fall again into contradiction when they say that genes act like enzyms, controlling the reactions in the cells. They do not remember that to cintroll a reaction means to mark its beginning, to determine its direction, to regulate its velocity, and to stop it Enzyms, as we have seen, enjoy none of these properties improperly attributed to them. If, therefore, genes work like enzyms, they do not controll reactions, being, on the contrary, controlled by substances and conditions present in the protoplasm. A gene, like en enzym, cannot go into play, in the absence of the substance to which it is specific. Tne genes are considered as having two roles in the organism one preparing the characters attributed to them and other, preparing the medium for the activities of other genes. At the first glance it seems that only the former is specific. But, if we consider that each gene acts only when the appropriated medium is prepared for it, it follows that the medium is as specific to the gene as the gene to the medium. The author concludes from the analysis of the manner in which genes perform their function, that all the genes work at the same time anywhere in the organism, and that every character results from the activities of all the genes. A gene does therefore not await for a given medium because it is always in the appropriated medium. If the substratum in which it opperates changes, its activity changes correspondingly. Genes are permanently at work. It is true that they attend for an adequate medium to develop a certain actvity. But this does not mean that it is resting while the required cellular environment is being prepared. It never rests. While attending for certain conditions, it opperates in the previous enes It passes from medium to medium, from activity to activity, without stopping anywhere. Genetists are acquainted with situations in which the attended results do not appear. To solve these situations they use to make appeal to the interference of other genes (modifiers, suppressors, activators, intensifiers, dilutors, a. s. o.), nothing else doing in this manner than displacing the problem. To make genetcal systems function genetists confer to their hypothetical entities truly miraculous faculties. To affirm as they do w'th so great a simplicity, that a gene produces an anthocyanin, an enzym, a hormone, or the like, is attribute to the gene activities that onlv very complex structures like cells or glands would be capable of producing Genetists try to avoid this difficulty advancing that the gene works in collaboration with all the other genes as well as with the cytoplasm. Of course, such an affirmation merely means that what works at each time is not the gene, but the whole cell. Consequently, if it is the whole cell which is at work in every situation, it follows that the complete set of genes are permanently in activity, their activity changing in accordance with the part of the organism in which they are working. Transplantation experiments carried out between creeper and normal fowl embryos are discussed in order to show that there is ro local gene action, at least in some cases in which genetists use to recognize such an action. The author thinks that the pleiotropism concept should be applied only to the effects and not to the causes. A pleiotropic gene would be one that in a single actuation upon a more primitive structure were capable of producing by means of secondary influences a multiple effect This definition, however, does not preclude localized gene action, only displacing it. But, if genetics goes back to the egg and puts in it the starting point for all events which in course of development finish by producing the visible characters of the organism, this will signify a great progress. From the analysis of the results of the study of the phenocopies the author concludes that agents other than genes being also capaole of determining the same characters as the genes, these entities lose much of their credit as the unique makers of the organism. Insisting about some points already discussed, the author lays once more stress upon the manner in which the genes exercise their activities, emphasizing that the complete set of genes works jointly in collaboration with the other elements of the cell, and that this work changes with development in the different parts of the organism. To defend this point of view the author starts fron the premiss that a nerve cell is different from a muscle cell. Taking this for granted the author continues saying that those cells have been differentiated as systems, that is all their parts have been changed during development. The nucleus of the nerve cell is therefore different from the nucleus of the muscle cell not only in shape, but also in function. Though fundamentally formed by th same parts, these cells differ integrally from one another by the specialization. Without losing anyone of its essenial properties the protoplasm differentiates itself into distinct kinds of cells, as the living beings differentiate into species. The modified cells within the organism are comparable to the modified organisms within the species. A nervo and a muscle cell of the same organism are therefore like two species originated from a common ancestor : integrally distinct. Like the cytoplasm, the nucleus of a nerve cell differs from the one of a muscle cell in all pecularities and accordingly, nerve cell chromosomes are different from muscle cell chromosomes. We cannot understand differentiation of a part only of a cell. The differentiation must be of the whole cell as a system. When a cell in the course of development becomes a nerve cell or a muscle cell , it undoubtedly acquires nerve cell or muscle cell cytoplasm and nucleus respectively. It is not admissible that the cytoplasm has been changed r.lone, the nucleus remaining the same in both kinds of cells. It is therefore legitimate to conclude that nerve ceil ha.s nerve cell chromosomes and muscle cell, muscle cell chromosomes. Consequently, the genes, representing as they do, specific functions of the chromossomes, are different in different sorts of cells. After having discussed the development of the Amphibian egg on the light of modern researches, the author says : We have seen till now that the development of the egg is almost finished and the larva about to become a free-swimming tadepole and, notwithstanding this, the genes have not yet entered with their specific work. If the haed and tail position is determined without the concourse of the genes; if dorso-ventrality and bilaterality of the embryo are not due to specific gene actions; if the unequal division of the blastula cells, the different speed with which the cells multiply in each hemisphere, and the differential repartition of the substances present in the cytoplasm, all this do not depend on genes; if gastrulation, neurulation. division of the embryo body into morphogenetic fields, definitive determination of primordia, and histological differentiation of the organism go on without the specific cooperation of the genes, it is the case of asking to what then the genes serve ? Based on the mechanism of plant galls formation by gall insects and on the manner in which organizers and their products exercise their activities in the developing organism, the author interprets gene action in the following way : The genes alter structures which have been formed without their specific intervention. Working in one substratum whose existence does not depend o nthem, the genes would be capable of modelling in it the particularities which make it characteristic for a given individual. Thus, the tegument of an animal, as a fundamental structure of the organism, is not due to gene action, but the presence or absence of hair, scales, tubercles, spines, the colour or any other particularities of the skin, may be decided by the genes. The organizer decides whether a primordium will be eye or gill. The details of these organs, however, are left to the genetic potentiality of the tissue which received the induction. For instance, Urodele mouth organizer induces Anura presumptive epidermis to develop into mouth. But, this mouth will be farhioned in the Anura manner. Finalizing the author presents his own concept of the genes. The genes are not independent material particles charged with specific activities, but specific functions of the whole chromosome. To say that a given chromosome has n genes means that this chromonome, in different circumstances, may exercise n distinct activities. Thus, under the influence of a leg evocator the chromosome, as whole, develops its "leg" activity, while wbitm the field of influence of an eye evocator it will develop its "eye" activity. Translocations, deficiencies and inversions will transform more or less deeply a whole into another one, This new whole may continue to produce the same activities it had formerly in addition to those wich may have been induced by the grafted fragment, may lose some functions or acquire entirely new properties, that is, properties that none of them had previously The theoretical possibility of the chromosomes acquiring new genetical properties in consequence of an exchange of parts postulated by the present writer has been experimentally confirmed by Dobzhansky, who verified that, when any two Drosophila pseudoobscura II - chromosomes exchange parts, the chossover chromosomes show new "synthetic" genetical effects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Examination of 267.107 liver specimens obtained in Brazil by viscerotomy during from 1937 to 1946 inclusive revealed 5,953 Schistosoma mansoni infe¬ctions. This represents 2.23% ± 0.019 of the total number of livers studied. Data on the incidence of the disease is tabulated by states and municipios. Infected livers were found in all of the states and territories except the Territory of Amapá. Schistosomiasis is widespread in Brazil with highest incidence in the states of the Northeast. The disease is quite common in Espírito Santo and Minas Gerais as well. A study of the age distribution of cases of intestinal schistosomiasis observed among liver specimens obtained in the year 1938 showed a low inci¬dence on young children with a peak of prevalence in the 10 to 19 year age group. The purpose of this contribution is to call attention of the health autho¬rities to the extent and gravity of the problem of intestinal schistosomiasis in Brazil.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, the author considers that in Brazil, there exist three forms of the disease of the Exanthematic Typhus group, that have been well studied: Neotropic Exanthematic Typhus, Murine Typhus and "Q" fever. The first of these forms has existed in this country, perhaps, for over five hundred years. He says that modern antibiotic, Aureomycin, Chloromycetin and, principally, Terramcin have resolved the problem of the therapeutic treatment of the disease. The modern insecticides, D. D. T., Gammexane and Toxafeno have resolved the prophylactic problem. The author studies minutely the question of denomination, showing, by means of drawing and history, the origin of the diseases, both Norte American and Brazilian. The name Neotropic Exanthematic Typhus (in BRazil, Colombia, United States or India) should substitute the erroneous anme "Spotted Fever"; the disease is exanthematic, a very different thing. He formulates two hypotheses about these diseases: first - it passed from the neotropic to the neartic region, where it acquired individual properties; second - they developed independently in a more rmeote epoch, acquiring each its own characteristics. The disease is today rather of the neotropic than of the neartic region. As it also exists in India it cannot be named American exanthematic Typhus. The author finds it unnecessary to change the name to "Rikettsioses"; we do not call bacillar dysentery "Schigeloses"or malignant edema "Chlostridiose". The name exanthematic typhus is classic, precise, scientific, expressive and the denomination "neotropical" completes the localisation. The author thinks that all the diseases of the exanthematic typhus group, in the world had a simple primitive common origin. At first, the rickettsias or the virus had a free life, perhaps in the waters of the marshes or grass-lands. Later, in the struggle for life, came the parasitism of the plants. They became fitoparatifs. The mode of life...

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sera from 9,254 individuals that presented at one of three outpatient clinics in Quito, Ecuador were assayed by indirect hemagglutination for the presence of antibodies reactive with antigens from Taenia solium cysts. Immunoblot anlysis of 81 selected sera with IHA titers ranging from 0 to 1,028 showed that a titer of maior ou igual a 32 was suggestive of exposure to the parasite. Nine percent (9 %) of the 9,254 patients had titers of 32 or greater. Of 3,503 sera from one clinic, which included sera from food handlers undergoing yearly physicals, 390 (11 %) were positive. In addition, a correlation with age was seen in some, but not all, populations. In situations where age-related effects were noted, the highest incidence was seen in the youngest (0-20 years) and in the oldest (51-60 years) group. Thus, a resurgence of infection after a period of lower prevalence may be developing. Overall, this study shows that cysticercosis is relatively common and potentially a serious health problem in this region.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Malaria is the most important public health problem in several countries. In Thailand, co-infections of Plasmodium vivax and Plasmodium falciparum are common. We examined the prevalence and patterns of mutations in P. vivax dihydrofolate reductase (Pvdhfr) and P. vivax dihydropteroate synthase (Pvdhps) in 103 blood samples collected from patients with P. vivax infection who had attended the malaria clinic in Mae Sot, Tak Province during 2009 and 2010. Using nested polymerase chain reaction-restriction fragment length polymorfism, we examined single nucleotide polymorphisms-haplotypes at amino acid positions 13, 33, 57, 58, 61, 117 and 173 of Pvdhfr and 383 and 553 of Pvdhps. All parasite isolates carried mutant Pvdhfr alleles, of which the most common alleles were triple mutants (99%). Eight different types of Pvdhfr and combination alleles were found, as follows: 57I/58R/117T, 57I/58R/117T, 57I/58R/117T/N, 57L/58R/117T, 57L/58R/117T, 58R/61M/117N, 58R/61M/117N and 13L/57L/58R/117T. The most common Pvdhfr alleles were 57I/58R/117T (77.7%), 57I/58R/117T/N (1%), 57L/58R/117T (5.8%) and 58R/61M/117N (14.5%). The most common Pvdhfr alleles were 57I/58R/117T (77.7%), 57I/58R/117T/N (1%), 57L/58R/117T (5.8%) and 58R/61M/117N (14.5%). Additionally, we recovered one isolate of a carrying a quadruple mutant allele, 13L/57L/58R/117T. The most prevalent Pvdhps allele was a single mutation in amino acid 383 (82.5%), followed by the wild-type A383/A553 (17.5%) allele. Results suggest that all P. vivax isolates in Thailand carry some combination of mutations in Pvdhfr and Pvdhps. Our findings demonstrate that development of new antifolate drugs effective against sulfadoxine-pyrimethamine-resistant P. vivax is required.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A total of 131 phlebotomine Algerian sandflies have been processed in the present study. They belong to the species Phlebotomus bergeroti, Phlebotomus alexandri, Phlebotomus sergenti, Phlebotomus chabaudi, Phlebotomus riouxi, Phlebotomus perniciosus, Phlebotomus longicuspis, Phlebotomus perfiliewi, Phlebotomus ariasi, Phlebotomus chadlii, Sergentomyia fallax, Sergentomyia minuta, Sergentomyia antennata, Sergentomyia schwetzi, Sergentomyia clydei, Sergentomyia christophersi and Grassomyia dreyfussi. They have been characterised by sequencing of a part of the cytochrome b (cyt b), t RNA serine and NADH1 on the one hand and of the cytochrome C oxidase I of the mitochondrial DNA (mtDNA) on the other hand. Our study highlights two sympatric populations within P. sergenti in the area of its type-locality and new haplotypes of P. perniciosus and P. longicuspis without recording the specimens called lcx previously found in North Africa. We tried to use a polymerase chain reaction-restriction fragment length polymorphism method based on a combined double digestion of each marker. These method is not interesting to identify sandflies all over the Mediterranean Basin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chagas disease or American trypanosomiasis is, together with geohelminths, the neglected disease that causes more loss of years of healthy life due to disability in Latin America. Chagas disease, as determined by the factors and determinants, shows that different contexts require different actions, preventing new cases or reducing the burden of disease. Control strategies must combine two general courses of action including prevention of transmission to prevent the occurrence of new cases (these measures are cost effective), as well as opportune diagnosis and treatment of infected individuals in order to prevent the clinical evolution of the disease and to allow them to recuperate their health. All actions should be implemented as fully as possible and with an integrated way, to maximise the impact. Chagas disease cannot be eradicated due because of the demonstrated existence of infected wild triatomines in permanent contact with domestic cycles and it contributes to the occurrence of at least few new cases. However, it is possible to interrupt the transmission ofTrypanosoma cruziin a large territory and to eliminate Chagas disease as a public health problem with a dramatic reduction of burden of the disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rice in Rio Grande do Sul State is grown mostly under flooding, which induces a series of chemical, physical and biological changes in the root environment. These changes, combined with the presence of rice plants, affect the availability of exchangeable ammonium (NH4+) and pH of soil solution, whereas the dynamics of both variables can be influenced by soil salinity, a common problem in the coastal region. This study was conducted to evaluate the dynamics of exchangeable NH4+ and pH in the soil solution, and their relation in the solution of Albaqualf soils with different salinity levels, under rice. Four field experiments were conducted with soils with exchangeable Na percentage (ESP) of 5.6, 9.0, 21.2, and 32.7 %. Prior to flooding, soil solution collectors were installed at depths of 5, 10 and 20 cm. The soil solution was collected weekly, from 7 to 91 days after flooding (DAF), to analyze exchangeable NH4+ and pH in the samples. Plant tissue was sampled 77 DAF, to determine N uptake and estimate the contribution of other N forms to rice nutrition. The content of exchangeable NH4+ decreased over time at all sites and depths, with a more pronounced reduction in soils with lower salinity levels, reaching values close to zero. A possible contribution of non-exchangeable NH4+ forms and N from soil organic matter to rice nutrition was observed. Soil pH decreased with time in soils with ESP 5.6 and 9.0 %, being positively correlated with the decreasing NH4+ levels at these sites.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Swine residue (SR) applied as nutrient source of crops such as corn, bean, soybean and wheat, besides representing an environmental-friendly way of disposing of organic waste resulting from swine production, may significantly increase grain yields, replacing mineral fertilizer. The objective was to evaluate the effect of SR rates on corn, common bean, soybean and wheat yields from 2002 to 2007, in comparison with mineral fertilizer. The experiment was carried out at the Instituto Agronômico do Paraná - IAPAR, Pato Branco, PR and consisted of increasing SR rates (0, 15, 30, 45, and 60 m³ ha-1) and one treatment with mineral fertilizer (NPK 4-30-10), using 250 kg ha-1 for bean and 300 kg ha-1 for corn, soybean and wheat. Also, in the treatment with mineral fertilizer, 60, 120 and 90 kg ha-1 N was applied as topdressing to bean, corn and wheat, respectively. There were significant increases of grain yield in all evaluated years and crops with increasing SR rates, especially in the grass species under study. Also, with increasing SR rates applied every six months, K, P, Ca and Mg were accumulated in the soil and the pH increased. The application of 60 m³ ha-1 SR increased yields and exceeded the yield obtained with the recommended mineral fertilizer, indicating this amount as adequate for these crops.