80 resultados para Zn(II) complexes
Resumo:
We present studies involving metallic ions and the herbicide glyphosate. The metallic complexes of Cu(II), Zn(II), Mn(II), Ni(II), Cd(II), Pb(II), Cr(III), Fe(III), Co(III), ammonium, sodium, Ag(I), alkaline earth metals and of some lanthanides ions are described. The complexes are discussed in terms of their synthesis, identification, stability and structural properties, based on data from the current literature.
Resumo:
Herein, the immobilization of some Schiff base-copper(II) complexes in smectite clays is described as a strategy for the heterogenization of homogeneous catalysts. The obtained materials were characterized by spectroscopic techniques, mostly UV/Vis, EPR, XANES and luminescence spectroscopy. SWy-2 and synthetic Laponite clays were used for the immobilization of two different complexes that have previously shown catalytic activity in the dismutation of superoxide radicals, and disproportionation of hydrogen peroxide. The obtained results indicated the occurrence of an intriguing intramolecular redox process involving copper and the imine ligand at the surface of the clays. These studies are supported by computational calculations.
Resumo:
Density functional theory was used to investigate the global and local reactivity of some cis-platinum(II) complexes including anticancer drugs, such as cisplatin and carboplatin. Calculated equilibrium geometries at mPW1PW/LANL2DZ* are in close agreement with their available X-ray data. We develop three new local reactivity descriptors: atomic descriptor of philicity, atomic descriptor group and atomic descriptor of philicity group for determining chemical reactivity and selectivity of the studied complexes. This contribution on chemical reactivity allow us to establish qualitative trends, which enable our descriptors for use in rational platinum based anticancer drug design.
Resumo:
Complexes of Ni(II) 2,3-, 3,5- and 2,6-dimethoxybenzoates have been synthesized, their physico-chemical properties have been compared and the influence of the position of -OCH3 substituent on their properties investigated. The analysed compounds are crystalline, hydrated salts with green colour. The carboxylate ions show a bidentate chelating or bridging coordination modes. The thermal stabilities of Ni(II) dimethoxybenzoates were investigated in air in the range of 293-1173 K. The complexes decompose in three steps, yelding the NiO as the final product of decomposition. Their solubilities in water at 293 K are in the order of 10-2-10-4 mol×dm-3. The magnetic susceptibilities for the analysed dimethoxybenzoates of Ni(II) were measured over the range of 76-303 K and the magnetic moments were calculated. The results reveal that the complexes are the high-spin ones and the ligands form the weak electrostatic field in the octahedral coordination sphere of the central Ni(II) ion. The various position -OCH3 groups in benzene ring cause the different steric, mesomeric and inductive effects on the electron density in benzene ring.
Resumo:
Physico-chemical properties of 3-chloro-2-nitrobenzoates of Co(II), Ni(II) and Cu(II) were synthesized and studied. The complexes were obtained as mono- and dihydrates with a metal ion to ligand ratio of 1 : 2. All analysed 3-chloro-2-nitrobenzoates are polycrystalline compounds with colours depending on the central ions: pink for Co(II), green for Ni(II) and blue for Cu(II) complexes. Their thermal decomposition was studied in the range of 293 523 K, because it was found that on heating in air above 523 K 3-chloro-2-nitrobenzoates decompose explosively. Hydrated complexes lose crystallization water molecules in one step and anhydrous compounds are formed. The final products of their decomposition are the oxides of the respective transition metals. From the results it appears that during dehydration process no transformation of nitro group to nitrite takes place. The solubilities of analysed complexes in water at 293 K are of the order of 10-4 10-2 mol / dm³. The magnetic moment values of Co2+, Ni2+ and Cu2+ ions in 3-chloro-2-nitrobenzoates experimentally determined at 76 303 K change from 3.67µB to 4.61µB for Co(II) complex, from 2.15µB to 2.87µB for Ni(II) 3-chloro-2-nitrobenzoate and from 0.26µB to 1.39µB for Cu(II) complex. 3-Chloro-2-nitrobenzoates of Co(II) and Ni(II) follow the Curie-Weiss law. Complex of Cu(II) forms dimer.
Resumo:
Voltammetric technique was used to study the binary and ternary complexes of cadmium with L-amino acids and vitamin-C (L-ascorbic acid) at pH =7.30 ± 0.01, µ = 1.0M KNO3 at 25ºC and 35ºC. Cd (II) formed 1:1:1, 1:1:2 and 1:2:1 complexes with L-lysine, L-ornithine, L-threonine, L-serine, L-phenylglycine, L-phenylalanine, L-glutamic acid and L-aspartic acid used as primary ligands and L-ascorbic acid used as secondary ligand. The trend of stability constant of complexes was L-lysine < L-ornithine < L-threonine < L-serine < L-phenylglycine < L-phenylalanine < L-glutamic acid < L-aspartic acid which can be explained on the basis of size, basicity and steric hindrance of ligands. The values of stability constant (log β) varied from 2.23 to11.33 confirm that these drugs i.e. L-amino acids or in combination with L-ascorbic acid or their complexes could be used against Cd (II) toxicity. The study has been carried out at 35ºC also to determine the thermodynamic parameters such as enthalpy change (ΔH), Free energy change (ΔG) and entropy change (ΔS) respectively.
Resumo:
A direct spectrophotometric method for simultaneous determination of Co(II) and Ni(II), with diethanoldithiocarbamate (DEDC) as complexing agent, is proposed using the maximum absorption at 360 and 638 nm (Co(II)/DEDC) and 390 nm (Ni/DEDC). Adjusting the best metal/ligand ratio, supporting eletrolite, pH, and time of analysis, linear analytical curves from 1.0 10-6-4.0 10-4 for Co(II) in the presence of Ni 1.0 10-6-1.0 10-4 mol L-1 were observed. No further treatment or calculation processes have been necessary. Recoveries in different mixing ratios were of 99%. Interference of Fe(III), Cu(II), Zn(II) and Cd(II), and anions as NO3-, Cl-, ClO4-, citrate and phosphate has been evaluated. The method was applied to natural waters spiked with the cations.
Resumo:
Some cyclopalladated compounds containing the azido group ligand and the (C-N) ring of N,N-dimethylbenzylamine have been prepared by bridge opening reactions of dimmer azide complex precursor with some diphosphines in different stoichiometric quantities. The neutral or ionic, mono or binuclear complexes synthesized were characterized by elemental analyses, I. R. spectroscopy and NMR techniques. The series of complexes was screened for cytotoxicity against a panel three human tumour cells lines(C6,Hep-2,HeLa). All complexes were found to be cytotoxic (IC50) at µM concentrations while one complex having the coordination bond N-Pd ruptured also displayed some differential cytotoxicity.
Resumo:
A flow injection spectrophotometric method was developed for determining aspartame in sweeteners. Sample was dissolved in water and 250 µL of the solution was injected into a carrier stream of 5.0 x 10-5 mol L-1 sodium borate solution. The sample flowed through a column (14 cm x 2.0 mm) packed with Zn3(PO4)2 immobilized in a polymeric matrix of polyester resin and Zn(II) ions were released from the solid-phase reactor by formation of the Zn(II)-aspartame complex. The mixture merged with a stream of borate buffer solution (pH 9.0) containing 0.030 % (m/v) alizarin red S and the Zn(II)-alizarin red complex formed was measured spectrophotometrically at 540 nm. The calibration graph for aspartame was linear in the concentration range from 10 to 80 µg mL-1 with a detection limit of 4 µg mL-1 of aspartame. The RSD was 0.3 % for a solution containing 40 µg mL-1 aspartame (n = 10) and seventy results were obtained per hour. The proposed method was applied for determining aspartame in commercial sweeteners.
Resumo:
This review presents studies on methyl coenzyme M reductase, the biological system Factor 430 (F430) and the use of nickel(II) complexes as structural and functional models. The ability of F430 and nickel(II) macrocycle complexes to mediate the reductive dehalogenation of cyclohexyl halogens and the CH3-S bond cleavage of methyl CoM (by sodium borohydride and some intermediate species) proposed for the catalytic cycle of the biological system F430 was reviewed. The importance of the structure of the nickel complexes and the condition of the catalytic reduction reaction are also discussed.
Resumo:
This work describes the optimization of pretreatment steps for the destruction of organic matter in samples of waters and biological fluids, by using an UV irradiation system with a high power UV radiation source (400 W). The efficiency of the system constructed for the photo-decomposition of samples of model waters, natural waters and biological fluids was investigated by performing recovery experiments of the metallic species Zn(II), Cd(II), Pb(II), Cu(II), Al(III) and Fe(III). The use of UV irradiation allowed the liberation of metals bound to the organic matrix and the determination of the total content of elements in the samples.
Resumo:
In this work, we describe the immobilization of the dinuclear compound [Cu2(apyhist)2Cl2](ClO4)2 (1) and its derived cations complexes, obtained in water solution or by deprotonation of the imidazolate moiety in the ligand leading to a cyclic tetranuclear species, in the Nafion® membrane on glass carbon electrode surface. After that, we studied the influence of the equilibrium in the electrocatalytic activity towards the reduction of H2O2 in the development of an amperometric sensor for the analytical determination of hydrogen peroxide. This strategy proved successful, and the electrochemical behaviour of the all complexes formed within the Nafion® coatings was characterized. We also provide evidence that its related cyclic tetranuclear imidazolate-bridged complex acts as a catalysts for the intramolecular, two-electron reduction of H2O2.
Resumo:
The DGT technique allows one to measure quantitatively free and labile metal species in aquatic systems. Nevertheless, for this approach, knowledge is required of the diffusion coefficients of the analytes in a diffusive layer. In this study, the diffusion coefficients of Hg(II), As(III), Mn(II), Mg(II), Cu(II), Cd(II) were determined in agarose gel and those of Ba(II), Cd(II), Cu(II), Mg(II), Mn(II) e Zn(II) in cellulose acetate membranes. These materials presented good performance and the reported results can be used as a data base for further DGT studies.
Resumo:
In this paper, we carry out a study on the process of sorption of lead in polluted waters usingnatural zeolites, with the objective of analyzing their behavior in the purification of water.Experiments are carried out under static and dynamic conditions to determine the influence of other metal ions, such as: Ca (II), Mg (II), K (I) and Na (I), on this process. We demonstrate that the affinity of Pb (II) with regard to zeolite is higher than that of the ions mentioned above. It allows us to use this material in the capture of lead in residual waters. A lineal model of regression was obtained using a computer program called Eureka which relates the capacity of interchange of zeolite with respect to the concentration of the metal ions present in waters. We also studied the selectivity of zeolite in the process of sorption of Pb (II) compared with other heavy metals like Zn (II) and Cd (II).The results achieved in both cases increase the expectancy about the usage of zeolite as a low cost material for purifing waters.
Resumo:
Os autores estudaram o comportamento cromatográfico de preparações farmacêuticas comerciais contendo o íon Fe (II). Utilizando celulose microcristalina/Propanol: ácido clorídrico 4 N: ácido acético concentrado: ácido nítrico concentrado: clorofórmio (40: 5: 5: 10: 10), como sistema cromatográfico e alizarina como reagente de detecção, Fe (II), Mn (II), Mg (II), Cu (II), Zn (II) e Ca (II) foram separados e identificados pela Cromatografia Planar. O Fe (II) foi determinado pela reação com a ortofenantrolina, resultando em solução adequada para quantificação colorimétrica.