22 resultados para Wear abrasive


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper discusses the effect of tool wear on surface finish in single-point diamond turning of single crystal silicon. The morphology and topography of the machined surface clearly show the type of cutting edge wear reproduced onto the cutting grooves. Scanning electron microscopy is used in order to correlate the cutting edge damage and microtopography features observed through atomic force microscopy. The possible wear mechanisms affecting tool performance and surface generation during cutting are also discussed. The zero degree rake angle single point diamond tool presented small nicks on the cutting edge. The negative rake angle tools presented more a type of crater wear on the rake face. No wear was detected on flank face of the diamond tools.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of high-strength aluminium alloys as material for injection molding tools to produce small and medium batches of plastic products as well as prototyping molds is becoming of increasing demand by the tooling industry. These alloys are replacing the traditional use of steel in the cases above because they offer many advantages such as very high thermal conductivity associated with good corrosion and wear resistance presenting good machinability in milling and electrical discharge machining operations. Unfortunately there is little technological knowledge on the Electrical Discharge Machining (EDM) of high-strength aluminium alloys, especially about the AMP 8000 alloy. The duty factor, which means the ratio between pulse duration and pulse cycle time exerts an important role on the performance of EDM. This work has carried out an experimental study on the variation of the duty factor in order to analyze its influence on material removal rate and volumetric relative wear under roughing conditions of EDM process. The results showed that high values of duty factor are possible to be applied without bringing instability into the EDM process and with improvement of material removal rate and volumetric relative wear.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Carbon nanotubes are highly versatile materials; new applications using them are continuously being developed. Special attention is being dedicated to the possible use of multiwalled carbon nanotubes in biomaterials contacting with bone. However, carbon nanotubes are also controversial in regards to effects exerted on living organisms. Carbon nanotubes can be used to improve the tribological properties of polymer/composite materials. Ultrahigh molecular weight polyethylene (UHMWPE) is a polymer widely used in orthopedic applications that imply wear and particle generation. We describe here the response of human osteoblast-like MG63 cells after 6 days of culture in contact with artificially generated particles from both UHMWPE polymer and multiwalled carbon nanotubes (MWCNT)/UHMWPE nanocomposites. This novel composite has superior wear behavior, having thus the potential to reduce the number of revision hip arthroplasty surgeries required by wear failure of acetabular cups and diminish particle-induced osteolysis. The results of an in vitro study of viability and proliferation and interleukin-6 (IL-6) production suggest good cytocompatibility, similar to that of conventional UHMWPE (WST-1 assay results are reported as percentage of control ± SD: UHMWPE = 96.19 ± 7.92, MWCNT/UHMWPE = 97.92 ± 8.29%; total protein: control = 139.73 ± 10.78, UHMWPE = 137.07 ± 6.17, MWCNT/UHMWPE = 163.29 ± 11.81 µg/mL; IL-6: control = 90.93 ± 10.30, UHMWPE = 92.52 ± 11.02, MWCNT/UHMWPE = 108.99 ± 9.90 pg/mL). Standard cell culture conditions were considered as control. These results, especially the absence of significant elevation in the osteolysis inductor IL-6 values, reinforce the potential of this superior wear-resistant composite for future orthopedic applications, when compared to traditional UHMWPE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wear particles are phagocytosed by macrophages and other inflammatory cells, resulting in cellular activation and release of proinflammatory factors, which cause periprosthetic osteolysis and subsequent aseptic loosening, the most common causes of total joint arthroplasty failure. During this pathological process, tumor necrosis factor-alpha (TNF-α) plays an important role in wear-particle-induced osteolysis. In this study, recombination adenovirus (Ad) vectors carrying both target genes [TNF-α small interfering RNA (TNF-α-siRNA) and bone morphogenetic protein 2 (BMP-2)] were synthesized and transfected into RAW264.7 macrophages and pro-osteoblastic MC3T3-E1 cells, respectively. The target gene BMP-2, expressed on pro-osteoblastic MC3T3-E1 cells and silenced by the TNF-α gene on cells, was treated with titanium (Ti) particles that were assessed by real-time PCR and Western blot. We showed that recombinant adenovirus (Ad-siTNFα-BMP-2) can induce osteoblast differentiation when treated with conditioned medium (CM) containing RAW264.7 macrophages challenged with a combination of Ti particles and Ad-siTNFα-BMP-2 (Ti-ad CM) assessed by alkaline phosphatase activity. The receptor activator of nuclear factor-κB ligand was downregulated in pro-osteoblastic MC3T3-E1 cells treated with Ti-ad CM in comparison with conditioned medium of RAW264.7 macrophages challenged with Ti particles (Ti CM). We suggest that Ad-siTNFα-BMP-2 induced osteoblast differentiation and inhibited osteoclastogenesis on a cell model of a Ti particle-induced inflammatory response, which may provide a novel approach for the treatment of periprosthetic osteolysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A previous study showed that BMP-2 (bone morphogenetic protein-2) and wear debris can separately support osteoclast formation induced by the receptor activator of NF-κB ligand (RANKL). However, the effect of BMP-2 on wear debris-induced osteoclast formation is unclear. In this study, we show that neither titanium particles nor BMP-2 can induce osteoclast formation in RAW 264.7 mouse leukemic monocyte macrophage cells but that BMP-2 synergizes with titanium particles to enhance osteoclast formation in the presence of RANKL, and that at a low concentration, BMP-2 has an optimal effect to stimulate the size and number of multinuclear osteoclasts, expression of osteoclast genes, and resorption area. Our data also clarify that the effects caused by the increase in BMP-2 on phosphorylated SMAD levels such as c-Fos expression increased throughout the early stages of osteoclastogenesis. BMP-2 and titanium particles stimulate the expression of p-JNK, p-P38, p-IkB, and P50 compared with the titanium group. These data suggested that BMP-2 may be a crucial factor in titanium particle-mediated osteoclast formation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Seed dormancy is a frequent phenomenon in tropical species, causing slow and non-uniform germination. To overcome this, treatments such as scarification on abrasive surface and hot water are efficient. The objective of this study was to quantify seed germination with no treatment (Experiment 1) and identify an efficient method of breaking dormancy in Schizolobium amazonicum Huber ex Ducke seeds (Experiment 2). The effects of manual scarification on electric emery, water at 80ºC and 100ºC and manual scarification on wood sandpaper were studied. Seeds were sown either immediately after scarification or after immersion in water for 24h in a sand and sawdust mixture. Germination and hard seed percentages and germination speed were recorded and analyzed in a completely randomized design. Analysis of germination was carried out at six, nine, 12, 15, 18, 21 and 24 days after sowing as a 4x2 factorial design and through regression analysis. Treatment means of the remaining variables were compared by the Tukey test. Seed germination with no treatment started on the 7th day after sowing and reached 90% on the 2310th day (Experiment 1). Significant interaction between treatments to overcome dormancy and time of immersion in water was observed (Experiment 2). In general, immersion in water increased the germination in most evaluations. The regression analyses were significant for all treatments with exception of the control treatment and immersion in water at 80ºC. Germination speed was higher when seeds were scarified on an abrasive surface (emery and sandpaper) and, in these treatments, the germination ranged from 87% to 96%, with no hard seeds. S. amazonicum seeds coats are impermeable to water, which hinders quick and uniform germination. Scarification on electric emery followed by immediate sowing, scarification on sandpaper followed by immediate sowing and sowing after 24h were the most efficient treatments for overcoming dormancy in S. amazonicum seeds.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The impermeability of seed coat to water is common mechanism in Fabaceae seeds. Treatments to overcome hardseededness include scarification with sulphuric acid, scarification on abrasive surface and soaking in water among others. The objective of this study was to identify an effective method to overcome dormancy in Dinizia excelsa seeds. A pre-test (untreated seed) and three experiments were carried out: immersion of seeds in acid sulphuric for 10, 20, 30, 40, 50 and 60min (experiment 1); scarification on abrasive surface at the positions distal end, near of the mycrophyle and on the lateral tissue and tegument clipping at 1mm of the distal end, near of the mycrophyle and on the lateral tissue (experiment 2); scarification on abrasive surface and immersion in water for 0, 12, 24 and 48h (experiment 3). The experimental design was completely with four replications of 50 seeds for each treatment. The statistical analysis was carried out by ANOVA and regression analysis. Seedlings emergence on untreated seeds started on the 8th day after sowing and reached 52.5% on the 1,709th day. In general, the treatments to overcome dormancy increase emergence. Emergence was higher for seeds treated with sulphuric acid for 20 and 30min with emergence of 93.6% and 86.6%, respectively. For seeds scarified on abrasive surface higher emergences were recorded for scarification on distal end, near of the mycrophyle and on the lateral, 82.7%, 74.3% and 75.7%, respectively. Seeds scarified manually showed higher emergence when not immersed in water (75%), or when immersed for 12 and 24h (75%, 73.6% and 65.6%, respectively). Immersion seeds in sulphuric acid for 20 and 30min and scarification on abrasive surface of distal end are effective to overcome dormancy in D. excelsa.