28 resultados para Water pressure
Resumo:
Experiments were performed to determine average heat transfer coefficients and friction factors for turbulent flow through annular ducts with pin fins. The measurements were carried out by means of a double-pipe heat exchanger. The total number of pins attached to the inner wall of the annular region was 560. The working fluids were air, flowing in the annular channel, and water through the inner circular tube. The average heat transfer coefficients of the pinned air-side were obtained from the experimental determination of the overall heat transfer coefficients of the heat exchanger and from the knowledge of the average heat transfer coefficients of the circular pipe (water-side), which could be found in the pertinent literature. To attain fully developed conditions, the heat exchanger was built with additional lengths before and after the test section. The inner circular duct of the heat exchanger and the pin fins were made of brass. Due to the high thermal conductivity of the brass, the small tube thickness and water temperature variation, the surface of the internal tube was practically isothermal. The external tube was made of an industrial plastic which was insulated from the environment by means of a glass wool batt. In this manner, the outer surface of the annular channel can be considered adiabatic. The results are presented in dimensionless forms, in terms of average Nusselt numbers and friction factors as functions of the flow Reynolds number, ranging from 13,000 to 80,000. The pin fin efficiency, which depends on the heat transfer coefficient, is also determined as a function of dimensionless parameters. A comparison of the present results with those for smooth sections (without pins) is also presented. The purpose of such a comparison is to study the influence of the presence of the pins on the pressure drop and heat transfer rate.
Resumo:
An experimental apparatus for the study of core annular flows of heavy oil and water at room temperature has been set up and tested at laboratory scale. The test section consists of a 2.75 cm ID galvanized steel pipe. Tap water and a heavy oil (17.6 Pa.s; 963 kg/m³) were used. Pressure drop in a vertical upward test section was accurately measured for oil flow rates in the range 0.297 - 1.045 l/s and water flow rates ranging from 0.063 to 0.315 l/s. The oil-water input ratio was in the range 1-14. The measured pressure drop comprises gravitational and frictional parts. The gravitational pressure drop was expressed in terms of the volumetric fraction of the core, which was determined from a correlation developed by Bannwart (1998b). The existence of an optimum water-oil input ratio for each oil flow rate was observed in the range 0.07 - 0.5. The frictional pressure drop was modeled to account for both hydrodynamic and net buoyancy effects on the core. The model was adjusted to fit our data and shows excellent agreement with data from another source (Bai, 1995).
Resumo:
The objective of this work was to evaluate characteristics associated with the photosynthetic activity of cassava plants in competition with weeds or not. The trial was performed on open environment conditions, with experimental units consisting of fiber glass vases with 150 dm³ filled with Red Yellow Latosol, previously fertilized. Treatments consisted in the cultivation of cassava plants isolated and associated to three weed species (Bidens pilosa, Commelina benghalensis and Brachiaria plantaginea). After cassava shooting, 15 days after planting, a removal of the weeds excess was performed, sown at the time of cassava planting, leaving six plants m-2 of B. pilosa and four plants m-2 of C. benghalensis and B. plantaginea. At 60 days after emergence (DAE), stomatal conductance (Gs), vapor pressure in the substomatal cavity (Ean), temperature gradient between leaf and air (ΔT), transpiration rate (E) and water use efficiency (WUE) were evaluated. B. pilosa showed greater capacity to affect growth of cassava plants. B. plantaginea is very efficient in using water, especially by presenting C4 metabolism, and remains competitive with cassava even under temporarily low water status. C. benghalensis, in turn, is not a good competitor for light and apparently is not the primary cause of water depletion in the soil. The effects of weeds, in this case, were more associated with the competition. However, they were found between moderate to low. This implies that the competition established at experimental level was low.
Resumo:
Water relations of the tree species Myrsine umbellata Mart. ex A. DC., Dodonaea viscosa Jacq. and Erythroxylum argentinum O. E. Schulz, growing on a rock outcrop in the "Parque Estadual de Itapuã" (RS), were studied. Environmental (precipitation, temperature, soil water) and plant (water potential, vapor pressure deficit, stomatal conductance, transpiration, leaf specific hydraulic conductance, osmotic potential and cell wall elasticity) parameters were collected in five periods and pooled into two sets of data: wet and dry periods. Myrsine umbellata showed great stability of the plant parameters, including the maintenance of high pre-dawn (psiwpd) and mid-day (psiwmd) water potentials in the dry period (-0.48 and -1.12 MPa, respectively), suggesting the presence of a deep root system. Dodonaea viscosa and E. argentinum reached lower psiwpd (-1.41 and -1.97 MPa, respectively) and a greater degree of stomatal closure in the dry period, suggesting a shallower root system. Differential exposure to soil drought was also corroborated by differential drought effects on the whole-plant leaf specific hydraulic conductance (Gt). Correlation analysis pointed to weak correlations between psiwpd and g s. Erythroxylum argentinum was the only species to show osmotic adjustment in response to drought. It is suggested that M. umbellata has low tolerance to water deficits, adopting an avoidance behavior. The much lower values of psiw reached by D. viscosa and E. argentinum suggest a greater tolerance to drought by these species.
Resumo:
Cardiac hypertrophy that accompanies hypertension seems to be a phenomenon of multifactorial origin whose development does not seem to depend on an increased pressure load alone, but also on local growth factors and cardioadrenergic activity. The aim of the present study was to determine if sympathetic renal denervation and its effects on arterial pressure level can prevent cardiac hypertrophy and if it can also delay the onset and attenuate the severity of deoxycorticosterone acetate (DOCA)-salt hypertension. DOCA-salt treatment was initiated in rats seven days after uninephrectomy and contralateral renal denervation or sham renal denervation. DOCA (15 mg/kg, sc) or vehicle (soybean oil, 0.25 ml per animal) was administered twice a week for two weeks. Rats treated with DOCA or vehicle (control) were provided drinking water containing 1% NaCl and 0.03% KCl. At the end of the treatment period, mean arterial pressure (MAP) and heart rate measurements were made in conscious animals. Under ether anesthesia, the heart was removed and the right and left ventricles (including the septum) were separated and weighed. DOCA-salt treatment produced a significant increase in left ventricular weight/body weight (LVW/BW) ratio (2.44 ± 0.09 mg/g) and right ventricular weight/body weight (RVW/BW) ratio (0.53 ± 0.01 mg/g) compared to control (1.92 ± 0.04 and 0.48 ± 0.01 mg/g, respectively) rats. MAP was significantly higher (39%) in DOCA-salt rats. Renal denervation prevented (P>0.05) the development of hypertension in DOCA-salt rats but did not prevent the increase in LVW/BW (2.27 ± 0.03 mg/g) and RVW/BW (0.52 ± 0.01 mg/g). We have shown that the increase in arterial pressure level is not responsible for cardiac hypertrophy, which may be more related to other events associated with DOCA-salt hypertension, such as an increase in cardiac sympathetic activity
Resumo:
Lead (Pb)-induced hypertension is characterized by an increase in reactive oxygen species (ROS) and a decrease in nitric oxide (NO). In the present study we evaluated the effect of L-arginine (NO precursor), dimercaptosuccinic acid (DMSA, a chelating agent and ROS scavenger), and the association of L-arginine/DMSA on tissue Pb mobilization and blood pressure levels in plumbism. Tissue Pb levels and blood pressure evolution were evaluated in rats exposed to: 1) Pb (750 ppm, in drinking water, for 70 days), 2) Pb plus water for 30 more days, 3) Pb plus DMSA (50 mg kg-1 day-1, po), L-arginine (0.6%, in drinking water), and the combination of L-arginine/DMSA for 30 more days, and 4) their respective matching controls. Pb exposure increased Pb levels in the blood, liver, femur, kidney and aorta. Pb levels in tissues decreased after cessation of Pb administration, except in the aorta. These levels did not reach those observed in nonintoxicated rats. All treatments mobilized Pb from the kidney, femur and liver. Pb mobilization from the aorta was only effective with the L-arginine/DMSA treatment. Blood Pb concentrations in Pb-treated groups were not different from those of the Pb/water group. Pb increased blood pressure starting from the 5th week. L-arginine and DMSA treatments (4th week) and the combination of L-arginine/DMSA (3rd and 4th weeks) decreased blood pressure levels of intoxicated rats. These levels did not reach those of nonintoxicated rats. Treatment with L-arginine/DMSA was more effective than the isolated treatments in mobilizing Pb from tissues and in reducing the blood pressure of intoxicated rats.
Resumo:
Hydration is recommended in order to decrease the overload on the cardiovascular system when healthy individuals exercise, mainly in the heat. To date, no criteria have been established for hydration for hypertensive (HY) individuals during exercise in a hot environment. Eight male HY volunteers without another medical problem and 8 normal (NO) subjects (46 ± 3 and 48 ± 1 years; 78.8 ± 2.5 and 79.5 ± 2.8 kg; 171 ± 2 and 167 ± 1 cm; body mass index = 26.8 ± 0.7 and 28.5 ± 0.6 kg/m²; resting systolic (SBP) = 142.5 and 112.5 mmHg and diastolic blood pressure (DBP) = 97.5 and 78.1 mmHg, respectively) exercised for 60 min on a cycle ergometer (40% of VO2peak) with (500 ml 2 h before and 115 ml every 15 min throughout exercise) or without water ingestion, in a hot humid environment (30ºC and 85% humidity). Rectal (Tre) and skin (Tsk) temperatures, heart rate (HR), SBP, DBP, double product (DP), urinary volume (Vu), urine specific gravity (Gu), plasma osmolality (Posm), sweat rate (S R), and hydration level were measured. Data were analyzed using ANOVA in a split plot design, followed by the Newman-Keuls test. There were no differences in Vu, Posm, Gu and S R responses between HY and NO during heat exercise with or without water ingestion but there was a gradual increase in HR (59 and 51%), SBP (18 and 28%), DP (80 and 95%), Tre (1.4 and 1.3%), and Tsk (6 and 3%) in HY and NO, respectively. HY had higher HR (10%), SBP (21%), DBP (20%), DP (34%), and Tsk (1%) than NO during both experimental situations. The exercise-related differences in SBP, DP and Tsk between HY and NO were increased by water ingestion (P < 0.05). The results showed that cardiac work and Tsk during exercise were higher in HY than in NO and the difference between the two groups increased even further with water ingestion. It was concluded that hydration protocol recommended for NO during exercise could induce an abnormal cardiac and thermoregulatory responses for HY individuals without drug therapy.
Resumo:
To examine the possible age-related blood pressure (BP) deregulation in response to central hypervolemia, we measured spontaneous baroreflex sensitivity (SBRS), carotid arterial compliance (CC), and R-R interval coefficient of variation (RRICV) during basal and thermoneutral resting head-out-of-water immersion (HOWI) in 7 young (YG = 24.0 ± 0.8 years) and 6 middle-aged/older (OL = 59.3 ± 1.3 years) healthy men. Compared with basal conditions (YG = 19.6 ± 4.0 vs OL = 6.1 ± 1.5 ms/mmHg, P < 0.05), SBRS remained higher in YG than OL during rest HOWI (YG = 23.6 ± 6.6 vs OL = 9.3 ± 2.1 ms/mmHg, P < 0.05). The RRICV was significantly different between groups (YG = 6.5 ± 1.4 vs OL = 2.8 ± 0.4%, P < 0.05) under HOWI. The OL group had no increase in CC, but a significant increase in systolic BP (basal = 115.3 ± 4.4 vs water = 129.3 ± 5.3 mmHg, P < 0.05) under HOWI. In contrast, the YG group had a significant increase in CC (basal = 0.16 ± 0.01 vs water = 0.17 ± 0.02 mm²/mmHg, P < 0.05) with no changes in systolic BP. SBRS was positively related to CC (r = 0.58, P < 0.05 for basal vs r = 0.62, P < 0.05 for water). Our data suggest that age-related vagal dysfunction and reduced CC may be associated with SBRS differences between YG and OL groups, and with BP elevation during HOWI in healthy older men.
Resumo:
Little is known about the barrier properties of polymer films during high pressure processing of prepackaged foods. In order to learn more about this, we examined the influence of high hydrostatic pressure on the permeation of raspberry ketone (dissolved in ethanol/water) through polyamide-6 films at temperatures between 20 and 60ºC. Permeation was lowered by increasing pressure at all temperatures. At 23°C, the increasing pressure sequence 0.1, 50, 100, 150, and 200 MPa correlated with the decreasing permeation coefficients P/(10(9) cm² s-1) of 6.2, 3.8, 3.0, 2.2, and 1.6. Analysis of the permeation kinetics indicated that this effect was due to a reduced diffusion coefficient. Pressure and temperature acted antagonistically to each other. The decrease in permeation at 200 MPa was compensated for by a temperature increase of 20ºC. After release of pressure, the former permeation coefficients were recovered, which suggests that this `pressure effect' is reversible. Taken together, our data revealed no detrimental effects of high hydrostatic pressure on the barrier properties of polymer films.
Resumo:
The nucleus of the solitary tract (NTS) is the primary site of the cardiovascular afferent information about arterial blood pressure and volume. The NTS projects to areas in the central nervous system involved in cardiovascular regulation and hydroelectrolyte balance, such as the anteroventral third ventricle region and the lateral parabrachial nucleus. The aim of the present study was to investigate the effects of electrolytic lesion of the commissural NTS on water and 0.3 M NaCl intake and the cardiovascular responses to subcutaneous injection of isoproterenol. Male Holtzman rats weighing 280 to 320 g were submitted to sham lesion or electrolytic lesion of the commissural NTS (N = 6-15/group). The sham-lesioned rats had the electrode placed along the same coordinates, except that no current was passed. Water intake induced by subcutaneous isoproterenol (30 µg/kg body weight) significantly increased in chronic (15 days) commissural NTS-lesioned rats (to 2.4 ± 0.2 vs sham: 1.9 ± 0.2 mL 100 g body weight-1 60 min-1). Isoproterenol did not induce any sodium intake in sham or in commissural NTS-lesioned rats. The isoproterenol-induced hypotension (sham: -27 ± 4 vs commissural NTS-lesioned rats: -22 ± 4 mmHg/20 min) and tachycardia (sham: 168 ± 10 vs commissural NTS: 144 ± 24 bpm/20 min) were not different between groups. The present results suggest that the commissural NTS is part of an inhibitory neural pathway involved in the control of water intake induced by subcutaneous isoproterenol, and that the overdrinking observed in lesioned rats is not the result of a cardiovascular imbalance in these animals.
Resumo:
Meconium aspiration syndrome causes respiratory failure after birth and in vivo monitoring of pulmonary edema is difficult. The objective of the present study was to assess hemodynamic changes and edema measured by transcardiopulmonary thermodilution in low weight newborn piglets. Additionally, the effect of early administration of sildenafil (2 mg/kg vo, 30 min after meconium aspiration) on this critical parameter was determined in the meconium aspiration syndrome model. Thirty-eight mechanically ventilated anesthetized male piglets (Sus scrofa domestica) aged 12 to 72 h (1660 ± 192 g) received diluted fresh human meconium in the airway in order to evoke pulmonary hypertension (PHT). Extravascular lung water was measured in vivo with a PiCCO monitor and ex vivo by the gravimetric method, resulting in an overestimate of 3.5 ± 2.3 mL compared to the first measurement. A significant PHT of 15 Torr above basal pressure was observed, similar to that of severely affected humans, leading to an increase in ventilatory support. The vascular permeability index increased 57%, suggesting altered alveolocapillary membrane permeability. Histology revealed tissue vessel congestion and nonspecific chemical pneumonitis. A group of animals received sildenafil, which prevented the development of PHT and lung edema, as evaluated by in vivo monitoring. In summary, the transcardiopulmonary thermodilution method is a reliable tool for monitoring critical newborn changes, offering the opportunity to experimentally explore putative therapeutics in vivo. Sildenafil could be employed to prevent PHT and edema if used in the first stages of development of the disease.
Resumo:
The present study aimed to study the effects of exercise training (ET) performed by rats on a 10-week high-fructose diet on metabolic, hemodynamic, and autonomic changes, as well as intraocular pressure (IOP). Male Wistar rats receiving fructose overload in drinking water (100 g/L) were concomitantly trained on a treadmill for 10 weeks (FT group) or kept sedentary (F group), and a control group (C) was kept in normal laboratory conditions. The metabolic evaluation comprised the Lee index, glycemia, and insulin tolerance test (KITT). Arterial pressure (AP) was measured directly, and systolic AP variability was performed to determine peripheral autonomic modulation. ET attenuated impaired metabolic parameters, AP, IOP, and ocular perfusion pressure (OPP) induced by fructose overload (FT vs F). The increase in peripheral sympathetic modulation in F rats, demonstrated by systolic AP variance and low frequency (LF) band (F: 37±2, 6.6±0.3 vs C: 26±3, 3.6±0.5 mmHg2), was prevented by ET (FT: 29±3, 3.4±0.7 mmHg2). Positive correlations were found between the LF band and right IOP (r=0.57, P=0.01) and left IOP (r=0.64, P=0.003). Negative correlations were noted between KITT values and right IOP (r=-0.55, P=0.01) and left IOP (r=-0.62, P=0.005). ET in rats effectively prevented metabolic abnormalities and AP and IOP increases promoted by a high-fructose diet. In addition, ocular benefits triggered by exercise training were associated with peripheral autonomic improvement.
Resumo:
The aim of this study was to evaluate the influence of high hydrostatic pressure (150, 250, 350, 450, and 550 MPa), applied for 5 minutes, on antioxidant capacity, total phenolic content, color, firmness, rehydration ratio, and water holding capacity of aloe vera gel stored for 60 days at 4 °C. The analyzed properties of the pressurized gel showed significant changes after the storage period. The highest value of total phenolic content was found at 550 MPa. However, a decrease in the antioxidant capacity was observed for all pressurized gel samples when compared to the control sample (p < 0.05). The smallest changes in product color were observed at pressure levels between 150 and 250 MP. The application of high hydrostatic pressure resulted in lower gel firmness, and the lowest value was found at 150 MPa (p < 0.05). On the other hand, the untreated sample showed a greater decrease in firmness, indicating that high pressure processing preserves this property. The application of high hydrostatic pressure exhibited modifications in the food matrix, which were evaluated in terms of rehydration ratio and water holding capacity.