64 resultados para Water in oil emulsion
Resumo:
Cryptosporidium parvum and Giardia duodenalis are waterborne parasites that have caused several outbreaks of gastrointestinal disease associated with drinking water. Due to the lack of studies about the occurrence of these protozoa in water in the Southeast of Brazil, an investigation was conducted to verify the presence of cysts and oocysts in superficial raw water of the Atibaia River. The water samples were submitted to membrane filtration (3.0 mum) and elution was processed by (1) scraping and rinsing of membrane (RM method) and (2) acetone-dissolution (ADM method). Microbiologic and chemical parameters were analyzed. Aliquots of the pellets were examined by immunofluorescence (Merifluor, Meridian Diagnostics, Cincinnati, Ohio). All water samples were positive for Cryptosporidium and Giardia, in spite of the high turbidity. Higher recovery rates occurred in samples treated by the RM method than by the ADM technique. The goal for future work is the assessment of viability of cysts and oocysts to determine the public health significance of this finding.
Resumo:
Long pepper (Piper hispidinervum) is an Amazonian species of commercial interest due to the production of safrole. Drying long pepper biomass to extract safrole is a time consuming and costly process that can also result in the contamination of the material by microorganisms. The objective of this study was to analyze the yield of essential oil and safrole content of fresh and dried biomass of long pepper accessions maintained in the Active Germoplasm Bank of Embrapa Acre, in the state of Acre, Brazil, aiming at selecting genotypes with best performance on fresh biomass to recommend to the breeding program of the species. Yield of essential oil and safrole content were assessed in 15 long pepper accessions. The essential oil extraction was performed by hydrodistillation and analyzed by gas chromatography. A joint analysis of experiments was performed and the means of essential oil yield and safrole content for each biomass were compared by Student's t-test. There was variability in the essential oil yield and safrole content. There was no difference between the types of biomass for oil yield; however to the safrole content there was difference. Populations 9, 10, 12 and 15 had values of oil yield between 4.1 and 5.3%, and safrole content between 87.2 and 94.3%. The drying process does not interfere in oil productivity. These populations have potential for selection to the long pepper breeding program using oil extraction in the fresh biomass
Resumo:
In this study, the results obtained in a control programme of schistosomiasis in Ravena (Sabará, Minas Gerais) between 1980 and 1992 are evaluated. Control measures used in this programme were: specific treatment of the people infected with Schistosoma mansoni at four year-intervals (1980/84/88) and the supply of tap water to 90% of the residences in 1980. A significant reduction of the prevalence (36.7% to 11.5%, p < 0.05) and of the intensity of the infection (228.9 eggs per gram of feces (epg), s = 3.7 to 60.3 epg, s = 3.5, p < 0.05) was observed. No cases of the severe form of the disease were diagnosed in the area. Factors independently associated with the infection were in 1980 daily sand extraction and the lack of tap water in residences and in 1992 daily sand extraction and fishing and weekly swimming. Concluding, the supply of tap water together with quadrennial treatments significantly diminished both the prevalence and intensity of the S. mansoni infection, with the additional gain of persistent low indices even after four-year intervals between the treatments.
Resumo:
Nutrients are basically transported to the roots by mass flow and diffusion. The aim of this study was to quantify the contribution of these two mechanisms to the acquisition of macronutrients (N, P, K, Ca, Mg, and S) and cationic micronutrients (Fe, Mn, Zn, and Cu) by maize plants as well as xylem exudate volume and composition in response to soil aggregate size and water availability. The experiment was conducted in a greenhouse with samples of an Oxisol, from under two management systems: a region of natural savanna-like vegetation (Cerradão, CER) and continuous maize under conventional management for over 30 years (CCM). The treatments were arranged in a factorial [2 x (1 + 2) x 2] design, with two management systems (CER and CCM), (1 + 2) soil sifted through a 4 mm sieve and two aggregate classes (< 0.5 mm and 0.5 - 4.0 mm) and two soil matric potentials (-40 and -10 kPa). These were evaluated in a randomized block design with four replications. The experiment was conducted for 70 days after sowing. The influence of soil aggregate size and water potential on the nutrient transport mechanisms was highest in soil samples with higher nutrient concentrations in solution, in the CER system; diffusion became more relevant when water availability was higher and in aggregates < 0.5 mm. The volume of xylem exudate collected from maize plants increased with the decrease in aggregate size and the increased availability of soil water in the CER system. The highest Ca and Mg concentrations in the xylem exudate of plants grown on samples from the CER system were related to the high concentrations of these nutrients in the soil solution of this management system.
Resumo:
Peatlands form in areas where net primary of organic matter production exceeds losses due to the decomposition, leaching or disturbance. Due to their chemical and physical characteristics, bogs can influence water dynamics because they can store large volumes of water in the rainy season and gradually release this water during the other months of the year. In Diamantina, Minas Gerais, Brazil, a peatland in the environmental protection area of Pau-de-Fruta ensures the water supply of 40,000 inhabitants. The hypothesis of this study is that the peat bogs in Pau-de-Fruta act as an environment for carbon storage and a regulator of water flow in the Córrego das Pedras basin. The objective of this study was to estimate the water volume and organic matter mass in this peatland and to study the influence of this environment on the water flow in the Córrego das Pedras basin. The peatland was mapped using 57 transects, at intervals of 100 m. Along all transects, the depth of the peat bog, the Universal Transverse Mercator (UTM) coordinates and altitude were recorded every 20 m and used to calculate the area and volume of the peatland. The water volume was estimated, using a method developed in this study, and the mass of organic matter based on samples from 106 profiles. The peatland covered 81.7 hectares (ha), and stored 497,767 m³ of water, representing 83.7 % of the total volume of the peat bog. The total amount of organic matter (OM) was 45,148 t, corresponding to 552 t ha-1 of OM. The peat bog occupies 11.9 % of the area covered by the Córrego das Pedras basin and stores 77.6 % of the annual water surplus, thus controlling the water flow in the basin and consequently regulating the water course.
Resumo:
Peatlands are soil environments that store carbon and large amounts of water, due to their composition (90 % water), low hydraulic conductivity and a sponge-like behavior. It is estimated that peat bogs cover approximately 4.2 % of the Earth's surface and stock 28.4 % of the soil carbon of the planet. Approximately 612 000 ha of peatlands have been mapped in Brazil, but the peat bogs in the Serra do Espinhaço Meridional (SdEM) were not included. The objective of this study was to map the peat bogs of the northern part of the SdEM and estimate the organic matter pools and water volume they stock. The peat bogs were pre-identified and mapped by GIS and remote sensing techniques, using ArcGIS 9.3, ENVI 4.5 and GPS Track Maker Pro software and the maps validated in the field. Six peat bogs were mapped in detail (1:20,000 and 1:5,000) by transects spaced 100 m and each transect were determined every 20 m, the UTM (Universal Transverse Mercator) coordinates, depth and samples collected for characterization and determination of organic matter, according to the Brazilian System of Soil Classification. In the northern part of SdEM, 14,287.55 ha of peatlands were mapped, distributed over 1,180,109 ha, representing 1.2 % of the total area. These peatlands have an average volume of 170,021,845.00 m³ and stock 6,120,167 t (428.36 t ha-1) of organic matter and 142,138,262 m³ (9,948 m³ ha-1) of water. In the peat bogs of the Serra do Espinhaço Meridional, advanced stages of decomposing (sapric) organic matter predominate, followed by the intermediate stage (hemic). The vertical growth rate of the peatlands ranged between 0.04 and 0.43 mm year-1, while the carbon accumulation rate varied between 6.59 and 37.66 g m-2 year-1. The peat bogs of the SdEM contain the headwaters of important water bodies in the basins of the Jequitinhonha and San Francisco Rivers and store large amounts of organic carbon and water, which is the reason why the protection and preservation of these soil environments is such an urgent and increasing need.
Resumo:
The retention and availability of water in the soil vary according to the soil characteristics and determine plant growth. Thus, the aim of this study was to evaluate water retention and availability in the soils of the State of Santa Catarina, Brazil, according to the textural class, soil class and lithology. The surface and subsurface horizons of 44 profiles were sampled in different regions of the State and different cover crops to determine field capacity, permanent wilting point, available water content, particle size, and organic matter content. Water retention and availability between the horizons were compared in a mixed model, considering the textural classes, the soil classes and lithology as fixed factors and profiles as random factors. It may be concluded that water retention is greater in silty or clayey soils and that the organic matter content is higher, especially in Humic Cambisols, Nitisols and Ferralsol developed from igneous or sedimentary rocks. Water availability is greater in loam-textured soils, with high organic matter content, especially in soils of humic character. It is lower in the sandy texture class, especially in Arenosols formed from recent alluvial deposits or in gravelly soils derived from granite. The greater water availability in the surface horizons, with more organic matter than in the subsurface layers, illustrates the importance of organic matter for water retention and availability.
Resumo:
Modeling of water movement in non-saturated soil usually requires a large number of parameters and variables, such as initial soil water content, saturated water content and saturated hydraulic conductivity, which can be assessed relatively easily. Dimensional flow of water in the soil is usually modeled by a nonlinear partial differential equation, known as the Richards equation. Since this equation cannot be solved analytically in certain cases, one way to approach its solution is by numerical algorithms. The success of numerical models in describing the dynamics of water in the soil is closely related to the accuracy with which the water-physical parameters are determined. That has been a big challenge in the use of numerical models because these parameters are generally difficult to determine since they present great spatial variability in the soil. Therefore, it is necessary to develop and use methods that properly incorporate the uncertainties inherent to water displacement in soils. In this paper, a model based on fuzzy logic is used as an alternative to describe water flow in the vadose zone. This fuzzy model was developed to simulate the displacement of water in a non-vegetated crop soil during the period called the emergency phase. The principle of this model consists of a Mamdani fuzzy rule-based system in which the rules are based on the moisture content of adjacent soil layers. The performances of the results modeled by the fuzzy system were evaluated by the evolution of moisture profiles over time as compared to those obtained in the field. The results obtained through use of the fuzzy model provided satisfactory reproduction of soil moisture profiles.
Resumo:
The objective of this work was to assess the effect of different periods of water stress before harvest of pepper-rosmarin (Lippia sidoides) on the contents of essential oil and flavonoids. The experiment was carried out during 270 days of cultivation, with drainage lysimeters, in a completely randomized block design with five treatments: 0, 2, 4, 6, and 8 days of water suppression before harvest, with four replicates. Fresh and dry matter yield, essential oil content, total flavonoids content, and water potential and temperature of leaves were determined. There was a decrease of approximately 50% in oil content and of 60% in total flavonoid content with the reduction of leaf water potential in 0.3 MPa. Essential oil is more sensitive to water stress than total flavonoids.
Resumo:
Mulching has become an important technique for land cover, but there are some technical procedures which should be adjusted for these new modified conditions to establish optimum total water depth. It is also important to observe the soil-water relations as soil water distribution and wetted volume dimensions. The objective of the present study was to estimate melon evapotranspiration under mulching in a protected environment and to verify the water spatial distribution around the melon root system in two soil classes. Mulching provided 27 mm water saving by reducing water evaporation. In terms of volume each plant received, on average, the amount of 175.2 L of water in 84 days of cultivation without mulching, while when was used mulching the water requirement was 160.2 L per plant. The use of mulching reduced the soil moisture variability throughout the crop cycle and allowed a greater distribution of soil water that was more intense in the clay soil. The clayey soil provided on average 43 mm more water depth retention in 0.50 m soil deep relative to the sandy loam soil, and reduced 5.6 mm the crop cycle soil moisture variation compared to sandy loam soil.
Resumo:
In order to identify alternatives for the use of saline water in agricultural production, the effects of the use of brackish water in the preparation of the nutrient solution for the cultivation of sunflower (cv. EMBRAPA 122-V2000) were studied in hydroponic system on consumption and efficiency of water use for the production of achenes and biomass. A completely randomized design was used, analyzed in a 5x2 factorial scheme with three replications. The factors studied were five levels of salinity of nutrient solution (1.7 - control; 4.3; 6.0; 9.0; and 11.5dS m-1) and two plant densities - one or two plants per vessel. It was concluded that the water consumption of sunflower is a variable sensitive to the salinity of the nutrient solution, especially after the fourth week of crop, and that the efficiency of water use in the production of achenes and biomass of sunflower is greater when the plant density increases from one to two plants per vessel, even under saline stress.
Resumo:
Soil water availability is the main cause of reduced productivity, and the early development period most sensitive to water deficit. This study aimed to evaluate the drought resistance of the varieties of sugar-cane RB867515 and SP81-3250 during the early development using different levels of water deficit on four soil depths. The experiment was conducted at the Department of Biosystems at Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ/USP) in a greenhouse in soil classified as Oxisol, sandy loam texture (Series "Sertãozinho"). Once exhausted the level of available water in the soil, the dry strength of the studied strains are relatively low. Water balance with values less than -13 mm cause a significant decrease in the final population of plants, regardless of the variety, and values below -35 mm, leads to the death of all plants.
Resumo:
In this article it was evaluated the quality of water in the Cascavel river, in the city of Cascavel - Paraná using microbiological indicators, physical and chemical pollution and susceptibility / resistance in strains of Escherichia coli isolated antimicrobial trade. The water sampling was conducted between 2010-July and 2011-June at three points: a) near the source, b) urban area, c) rural area. The samples were analyzed for physical, chemical and microbiological variables: temperature, pH, color, turbidity, electrical conductivity, total nitrogen and total phosphorus, total coliforms (CT), fecal coliform (CTe) and Escherichia coli. Tests were also performed to nine antimicrobial commercial resistances. The variables studied indicated that the Cascavel river water was presented at disagreement with the resolution 357/2005 CONAMA (class I), ranking in the index as regular water quality. The physical, chemical and rainfall did not affect the growth of CT and CTe, with higher counts of E. coli in the urban area. The greatest resistance profiles of the strains of E. coli isolated from Cascavel river water was found in section 2, the urban area as a probable consequence of human influence on water quality.
Resumo:
The objective of this study was to evaluate the productive performance of sunflower plants irrigated with different levels of domestic treated sewage and groundwater well with different doses of nitrogen. It was used randomized blocks design in split-split plots with four replications. In the plots, we evaluated the effect of two types of irrigation water, in the subplots we evaluated the five irrigation levels expressed as 25, 50, 75, 100 and 125% of the Class A pan Evaporation (CAE), and in the sub subplots, we evaluated the effect of four different doses of nitrogen (25, 50, 75 and 100 kg ha-1). The irrigation of sunflower with domestic sewage produced greater yield potential of grain and oil. The use of water from treated wastewater can replace up to 50 kg N ha-1 without affecting productivity. It is recommended for the commercial production of sunflower the use of treated sewage water with irrigation depth relative to 100% of CAE (296.64 mm) and nitrogen of 25 kg ha-1.
Resumo:
OBJECTIVE: to verify the effectiveness of coconut water in preserving tissues for transplant. METHODS: Fifty male Wistar rats were randomly distributed in five groups, according to the following preservation solutions for tissue grafts: Group 1: Lactated Ringer; Group 2: Belzer solution; Group 3: mature coconut water; Group 4: green coconut water; Group 5: modified coconut water. In Group 5, the green coconut water has been modified like the Belzer solution. From each animal we harvasted the spleen, ovaries and skin of the back segment. These tissues were preserved for six hours in one of the solutions. Then, the grafts were reimplanted. The recovery of the function of the implanted tissues was assessed 90 days after surgery, by splenic scintigraphy and blood exame. The implanted tissues were collected for histopathological examination. RESULTS: The serum levels did not differ among groups, except for the animals in Group 5, which showed higher levels of IgG than Group 1, and differences in relation to FSH between groups 1 and 2 (p <0.001), 4 and 2 (p = 0.03) and 5 and 2 (p = 0.01). The splenic scintigraphy was not different between groups. The ovarian tissue was better preserved in mature coconut water (p <0.007). CONCLUSION: the coconut water-based solutions preserves spleen, ovary, and rat skin for six hours, maintaining their normal function.