31 resultados para WATER-VAPOR BARRIER
Resumo:
Edibles films are an alternative to synthetic materials used for packing food products. Barbados cherry is rich in vitamin C and carotenoids. The aim of this study was to characterize and develop films by casting from cassava starch, lyophilized Barbados cherry pulp and glycerol. The films were characterized with respect to thickness, water vapor permeability (WVP), water solubility, vitamin C, carotene and mechanical properties. The interaction of pulp and glycerol reduced film thickness. An increase in pulp concentration up to 60% increased WVP but beyond this concentration reduced both WVP and solubility leading to an increased level of vitamin C and β carotene in the films.
Resumo:
AbstractFilms obtained by blends between starch and other polymers and films developed with the addition of an oil can show higher water vapor barriers and improved mechanical properties. Films with starch/PVOH/alginate were obtained by adding copaiba and lemongrass essential oils (EOs). Films without oil served as the control. The microstructure, water vapor permeability (PVA), mechanical properties, and antifungal activity were determined for the films. The effects of the addition of the EOs on the properties of the films were dependent of the concentration and type of oil. The films with 0.5% lemongrass EO were similar to the control films. These films showed a 2.02 × 10-12 g s-1Pa m-1 PVA, 11.43 MPa tensile stress, 13.23% elongation, and 247.95 MPa/mm resistance at perforation. The addition of 1% of copaiba EO increased the PVA from 0.5 × 10-12 to 12.1 × 10-12 g s-1 Pa m-1 and the diffusion coefficient from 0.17 × 10-8 to 7.15 × 10-8m2/day. Films with quantities of EOs displayed fissures and micropores; the control films developed micropores with smaller diameters than films with EOs. The addition of EOs did not change the resulting infrared spectrum of the films. The films with oil displayed a diminished development of the Fusarium sp. culture, and the film without EOs did not display notable differences in the development of the culture. The starch/PVOH/alginate films with 0.5% lemongrass EO were the most suited for the development of a packaging active system.
Resumo:
The purpose of this project was to evaluate the sanitization effect on the quality of minimally processed guava. Initially, research was carried out with consumers in a supermarket to verify preferences of packaging for guava. Following this, the guava cv. Paluma underwent two sanitization sequences using dehydrated sodium dichloroisocyanurate compound, in 50 ppm concentration, sanitization prior to (S1) and after (S2) being cut; removal of excess water; conditioning in PET packaging and PSPVC and storage at 3 ºC ± 1 ºC. Physicochemical analysis - [pH, total soluble solids (SST), total labeled acidity (ATT), ascorbic acid (AA), total sugars (AT) and reducers (AR)], textural sensorial and microbiological analyses were used to monitor the quality of the products. The consumers preferred the guava cut in halves with pulp and packed in PET, although this packaging promoted condensation of water vapor on the inner surface of the lid, compromising the appearance of the product. The two sanitization sequences and the two kinds of packaging did not significantly affect the pH, SST, ATT, SST/ATT, texture and AA values. The AT and AR tenors increased significantly in the MP guavas stored in the PSPVC package. Both sanitizations were efficient in the bacterial control of the indicators of the hygienicsanitary conditions, although the S1 sanitization proved to be more efficient in the control of autochthonous aerobic microbiota (aerobic mesophylic microorganisms). It can be concluded that guava cv. Paluma packed in PSPVC can be conserved for 6 days when stored at 3 ºC.
Resumo:
The objective of this study was to perform an analysis of the characterization of buriti fruit (Mauritia flexuosa). Each part of the fruit (peel, pulp, and fibrous part) was analyzed and their hygroscopic behavior was evaluated to establish the drying and storage conditions. Adsorption and desorption isotherms were obtained at 25 °C to the monolayer value was estimated, and the application of the Halsey, Handerson, Kuhn, Mizrahi, Oswin, Smith, BET, and GAB models was evaluated to the prediction of the isotherms. The fruit pulp was classified as rich in high quality oil, and like the peel and the fibrous part, it was also considered as rich in dietary fiber. The isotherms of the fruit parts were classified as type II, and their microbiological stability (a w < 0.6) can be maintained at 25 °C if the moisture content is lower than 8.5, 7.3, and 11.0 g H2O.100 g-1 of dry matter (d.m.), respectively. The hygroscopic behavior showed that in order to ensure stability, the fruit parts should be packaged with low water vapor permeability. The monolayer demonstrated that the peel, pulp, and the fibrous part cannot be dried under moisture content lower than 5.9, 5.0, and 6.4 g H2O.100 g-1 d.m., respectively. GAB was the most adequate model to describe their isotherms.
Resumo:
Cubiu (Solanum sessiliflorum Dunal) is an Amazonian Basin native fruit. Its importance comes from its high contents of pectin. Currently, processing technologies are necessary for the substitution of the traditional system (small crops and small-scale processing) for a larger scale system and thus increase the use of biodiversity and promote the implementation of Local Productive Arrangements of agribusiness in the Amazon. This research aims to evaluate the methods of peeling cubiu. Ripe fruits were divided into lots (150 each) and subjected to the following treatments: immersion in 2.5% NaOH boiling solution for 5 minutes, exposure to water vapor, and immersion in water at 96 ºC for 5, 10, 15 and 20 minutes. The peel released during heat treatment and immediately removed under running tap water. In the control treatment, the fruits were manually peeled (unheated) with a stainless steel knife. The treatments were evaluated for completeness and ease of peeling, tissue integrity, texture, and peroxidase activity. The immersion in 2.5% NaOH boiling solution (5 minutes) stood out as the best treatment since it inhibited the enzymatic browning and intensified the natural yellow color of the cubiu fruit and easily and fully peeled the whole fruit more rapidly without damaging its tissues. This treatment was chosen as the most advantageous because it can promote simultaneous peeling and bleaching. Therefore, it is recommended for cubiu industrial processing.
Resumo:
The purpose of this study was to evaluate changes in the structure and some functional properties of biofilms added with modified clays (Cloisite® 15A and Cloisite® 30B) prepared by the casting method. The analysis of the microstructure of the films, scanning electron microscopy (SEM), Optical microscopy (MO), and Infrared Spectroscopy (FTIR) indicated that the addition of clay in the films resulted in the formation of a heterogeneous microstructure, microcomposite or tactoid. Due to the formation of a microcomposite structure, functional properties of the films added with both clays such as opacity, solubility, and permeability to water vapor (PVA), were not better than those of the control film. Thus, it was concluded that although it is possible to produce a film added with modified clays using the casting method, it was not possible to obtain intercalation or exfoliation in a nanocomposite, which would result in improved functional properties.
Resumo:
The aim of this study was to evaluate the physical and chemical parameters of Williams pear, stored at 25 ºC for 15 days, with and without edible coating. Edible coatings prepared with alginate 2% and carrageenan 0.5% were tested. The analyses carried out on the samples were: weight loss, pH, soluble solids, firmness, and color. The edible coatings were characterized in terms of mechanical properties, permeability, thickness, and opacity. The results show that the application of edible coatings with carrageenan and alginate in pears influenced physical and chemical characteristics such as weight loss, pH, total soluble solids, color, and firmness of the fruit. However, the alginate coating showed the best results on pear conservation since it had lower water vapor permeability and greater tensile strength, and therefore it can be used as a protective film on these fruits.
Resumo:
Brazil is considered one of the largest producers and consumers of tropical fruits. Green coconut (Cocos nucifera L.) stands out not only for its production and consumption, but also for the high amount of waste produced by coconut water industry and in natura consumption. Therefore, there is a need for utilization of this by-product. This study aims to study the adsorption isotherms of green coconut pulp and determine its isosteric heat of sorption. The adsorption isotherms at temperatures of 30, 40, 50, 60, and 70 °C were analyzed, and they exhibit type III behavior, typical of sugar rich foods. The experimental results of equilibrium moisture content were correlated by models present in the literature. The Guggenheim, Anderson and De Boer (GAB) model proved particularly good overall agreement with the experimental data. The heat of sorption determined from the adsorption isotherms increased with the decrease in moisture content. The heat of sorption is considered as indicative of intermolecular attractive forces between the sorption sites and water vapor, which is an important factor to predict the shelf life of dried products.
Resumo:
In this work a simple and sensitive procedure to extract organic mercury from water and sediment samples, using methylene chloride in acidic media followed by CVAFS quantification has been developed. The method was evaluated for possible interferents, using different inorganic mercury species and humic acid, no effects being observed. The detection limit for organic mercury was 160 pg and 396 pg for water and sediment samples respectively. The accuracy of the method was evaluated using a certified reference material of methylmercury (BCR-580, estuarine sediment). Recovery tests using methylmercury as surrogate spiked with 1.0 up to 30.0 ng L-1 ranged from 90 up to 109% for water samples, whereas for sediments, recoveries ranged from 57 up to 97%.
Resumo:
Cu/Ni/gamma-Al2O3 catalysts were prepared by an impregnation method with 2.5 or 5% wt of copper and 5 or 15% wt of nickel and applied in ethanol steam reforming. The catalysts were characterized by atomic absorption spectrophotometry, X-ray diffraction, temperature programmed reduction with hydrogen and nitrogen adsorption. The samples showed low crystallinity, with the presence of CuO and NiO, both as crystallites and in dispersed phase, as well as of NiO-Al2O3. The catalytic tests carried out at 400 ºC, with a 3:1 water/ethanol molar ratio, indicated the 5Cu/5Ni/Al2O3 catalyst as the most active for hydrogen production, with a hydrogen yield of 77% and ethanol conversion of 98%.
Resumo:
An UV-Ozone reactor was developed with an ignition tube extracted into HID mercury lamp used to irradiation on zinc oxide (ZnO) and fluorinated tin oxide (FTO) films for PLEDs devices. Different exposures times were used. In contact angle measurements revealed better results for ZnO and FTO by 15 and 5 min, respectively. In Diffuse Reflectance Infra-red Fourier Transformed (DRIFT) spectroscopy allowed the observation of water, hydrocarbon and carbon dioxide adsorbed on the untreated TCO surfaces. After the UV-Ozone treatment the contaminants were significantly reduced or eliminated and the PLEDs devices decreased threshold voltages in comparison with respectively untreated TCOs.
Resumo:
The effect of moisture content in the steam treatment and enzymatic hydrolysis of sugarcane bagasse was evaluated. Steam treatment was perfomed at 195-210 ºC for 4-8 min using cane bagasse with moisture contents in the range 16-100 wt% (dry basis). Increased moisture contents not only had a positive influence in recovery of main cane biomass components but also resulted in better substrates for enzymatic hydrolysis. As a result, drying is not required for optimal pretreatment and enzymatic hydrolysis of sugarcane bagasse, which can be processed into second generation ethanol immediately after crushing and hot water washing.
Resumo:
This paper discusses a rapid and sensitive method developed to determine trace levels of mercury in natural water samples by cold vapor atomic absorption spectrometry using a preconcentration system composed by mini-column packed with 100 mg of 2-aminothiazol modified silica gel (SiAT) coupled on-line with the spectrometer's cold vapor generator system. The optimum preconcentration conditions are also described here. The preconcentrated Hg(II) ions were eluted directly from the column to the spectrometer's cold vapor generator system using 100 µL of 2 mol L-1 hydrochloric acid and the retention efficiency achieved exceeded 95%. The enrichment factors determined were 29, 38 and 46 using 3, 4 and 5 mL of preconcentrated aqueous solutions containing 400 ng L-1 of Hg. The detection limit calculated was 5 ng L-1. The preconcentration procedure was applied to determine trace level mercury in spiked river water samples.
Resumo:
The objective of this work was to evaluate characteristics associated with the photosynthetic activity of cassava plants in competition with weeds or not. The trial was performed on open environment conditions, with experimental units consisting of fiber glass vases with 150 dm³ filled with Red Yellow Latosol, previously fertilized. Treatments consisted in the cultivation of cassava plants isolated and associated to three weed species (Bidens pilosa, Commelina benghalensis and Brachiaria plantaginea). After cassava shooting, 15 days after planting, a removal of the weeds excess was performed, sown at the time of cassava planting, leaving six plants m-2 of B. pilosa and four plants m-2 of C. benghalensis and B. plantaginea. At 60 days after emergence (DAE), stomatal conductance (Gs), vapor pressure in the substomatal cavity (Ean), temperature gradient between leaf and air (ΔT), transpiration rate (E) and water use efficiency (WUE) were evaluated. B. pilosa showed greater capacity to affect growth of cassava plants. B. plantaginea is very efficient in using water, especially by presenting C4 metabolism, and remains competitive with cassava even under temporarily low water status. C. benghalensis, in turn, is not a good competitor for light and apparently is not the primary cause of water depletion in the soil. The effects of weeds, in this case, were more associated with the competition. However, they were found between moderate to low. This implies that the competition established at experimental level was low.
Resumo:
Water relations of the tree species Myrsine umbellata Mart. ex A. DC., Dodonaea viscosa Jacq. and Erythroxylum argentinum O. E. Schulz, growing on a rock outcrop in the "Parque Estadual de Itapuã" (RS), were studied. Environmental (precipitation, temperature, soil water) and plant (water potential, vapor pressure deficit, stomatal conductance, transpiration, leaf specific hydraulic conductance, osmotic potential and cell wall elasticity) parameters were collected in five periods and pooled into two sets of data: wet and dry periods. Myrsine umbellata showed great stability of the plant parameters, including the maintenance of high pre-dawn (psiwpd) and mid-day (psiwmd) water potentials in the dry period (-0.48 and -1.12 MPa, respectively), suggesting the presence of a deep root system. Dodonaea viscosa and E. argentinum reached lower psiwpd (-1.41 and -1.97 MPa, respectively) and a greater degree of stomatal closure in the dry period, suggesting a shallower root system. Differential exposure to soil drought was also corroborated by differential drought effects on the whole-plant leaf specific hydraulic conductance (Gt). Correlation analysis pointed to weak correlations between psiwpd and g s. Erythroxylum argentinum was the only species to show osmotic adjustment in response to drought. It is suggested that M. umbellata has low tolerance to water deficits, adopting an avoidance behavior. The much lower values of psiw reached by D. viscosa and E. argentinum suggest a greater tolerance to drought by these species.