70 resultados para WATER AVAILABILITY


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The objectives of this work were to determine the heliotropic movements of the upper trifoliates for two soybean cultivars, BR 16 and Embrapa 48, during a daily cycle, in three phenological stages and two water regimes, and to estimate the impact of irrigation and daily leaflet movements on agronomic characteristics and grain yield. Heliotropic movements were studied in three phenological stages: V4-V6, V7-V10, and R5 in irrigated and non-irrigated plots. For each stage, the leaflet elevation and azimuth were measured hourly. Under a low (V4-V6 stage) and mid (V7-V10 stage) leaf area index (LAI) the diaheliotropism was slightly more frequent and intensive in non-irrigated than in irrigated plants, only at early morning and late afternoon hours. At R5 stage (high LAI) the paraheliotropism of superior trifoliates was predominant and more intensive in non-irrigated plants. The heliotropic movements are correlated to carbon gain, but not to environment (light intensity or temperature), for measurements at 11h. 'Embrapa 48' expresses greater paraheliotropism than 'BR 16' at high LAI, while 'BR 16' displays lower heliotropic plasticity under irrigation. In spite of significant heliotropic differences, genotype and water availability treatments did not influence the final grain yield.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The objective of this work was to determine the effect of climatic seasonality on physic nut (Jatropha curcas), in field, under semiarid climate conditions. Stomatal conductance (g s), transpiration (E), soluble leaf carbohydrates (SLC), free amino acids (FAA) and total proteins (TP) were measured in leaves, in a commercial plantation in Northeast Brazil, during the summer and autumn. Plants showed high g s and E, as well as SLC, FAA and TP contents in the summer, which gradually decreased with the lower temperatures and photosynthetically active radiation during the autumn, despite the higher water availability. Even in conditions of adequate water availability, the combination of low temperatures and reduced light drastically decreased foliar metabolism.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Abstract: The objective of this work was to evaluate soil water dynamics in areas cultivated with forage cactus clones and to determine how environmental conditions and crop growth affect evapotranspiration. The study was conducted in the municipality of Serra Talhada, in the state of Pernambuco, Brazil. Crop growth was monitored through changes in the cladode area index (CAI) and through the soil cover fraction, calculated at the end of the cycle. Real evapotranspiration (ET) of the three evaluated clones was obtained as the residual term in the soil water balance method. No difference was observed between soil water balance components, even though the evaluated clones were of different genus and had different CAI increments. Accumulated ET was of 1,173 mm during the 499 days of the experiment, resulting in daily average of 2.35 mm. The CAI increases the water consumption of the Orelha de Elefante Mexicana clone. In dry conditions, the water consumption of the Miúda clone responds more slowly to variation in soil water availability. The lower evolution of the CAI of the IPA Sertânia clone, during the rainy season, leads to a higher contribution of the evaporation component in ET. The atmospheric demand controls the ET of clones only when there is higher soil water availability; in this condition, the water consumption of the Miúda clone decreases more rapidly with the increase of atmospheric demand.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The water consumption and the crop coefficient of the banana cv. Pacovan were estimated in Petrolina County, northeastern Brazil, in order to establish guidelines to irrigation water management. Evaluations were carried out since planting in January 1999 to the 3rd harvest in September 2001 on a microsprinkler irrigated orchard, with plants spaced in a 3 x 3 m grid. Average daily water consumption was 3.9, 4.0, and 3.3 mm in the 1st, 2nd and 3rd growing seasons, respectively. Crop coefficient values increased from 0.7 (vegetative growth) to 1.1 (flowering). Even with high soil water availability, transpiration was reduced due to high evaporative demand.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The experiment was carried out at the Embrapa Semi-Árido, Petrolina-PE, Brazil, in order to study the physiological responses of umbu plants propagated by seeds and by stem cuttings under water stress conditions, based on leaf water potential and gas exchange measurements. Data were collected in one-year plants established in pots containing 30 kg of a sandy soil and submitted to twenty-day progressive soil water deficit. The evaluations were based on leaf water potential and gas exchange data collection using psychrometric chambers and a portable infra-red gas analyzer, respectively. Plants propagated by seeds maintained a significantly higher water potential, stomatal conductance, transpiration and photosynthesis under decreasing soil water availability. However, plants propagated by stem cuttings were unable to maintain a favorable internal water balance, reflecting negatively on stomatal conductance and leaf gas exchange. This fact is probably because umbu plants propagated by stem cuttings are not prone to formation of root tubers which are reservoirs for water and solutes. Thus, the establishing of umbu plants propagated by stem cuttings must be avoided in areas subjected to soil water deficit.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The consideration of the streamflow seasonality has a high potential to improve the water use. In order to give subsidies to the optimization of water use, it was evaluated the impact of the change of reference annual streamflow by the monthly streamflows in the potential water use throughout the hydrography of Paracatu sub-Basin. It was evaluated the impact on Q7,10 (lowest average streamflow during a 7-day period with an average recurrence of 10 years) and on Q95 (permanent flow present 95% of the time). The use of monthly streamflow to substitute the annual streamflow had a high potential of improvement of water resources use in the sub-Basin studied. The use of monthly Q 7,10 in substitution of annual Q 7,10 increases the potential water use that vary from about 10% in the months of lower water availability to values exceeding 200% in the months with higher availability of surface water resources. The use of monthly Q95 in substitution of the annual Q95 implies in changes oscillating from reduction of 37% in months of higher water restriction to values exceeding 100% in the months of higher availability, so the use of monthly Q95 instead of the annual Q95 enables the more rational and safe use of water resources.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Light and soil water availability may limit carbon uptake of trees in tropical rainforests. The objective of this work was to determine how photosynthetic traits of juvenile trees respond to variations in rainfall seasonality, leaf nutrient content, and opening of the forest canopy. The correlation between leaf nutrient content and annual growth rate of saplings was also assessed. In a terra firme rainforest of the central Amazon, leaf nutrient content and gas exchange parameters were measured in five sapling tree species in the dry and rainy season of 2008. Sapling growth was measured in 2008 and 2009. Rainfall seasonality led to variations in soil water content, but it did not affect leaf gas exchange parameters. Subtle changes in the canopy opening affected CO2 saturated photosynthesis (A pot, p = 0.04). Although A pot was affected by leaf nutrient content (as follows: P > Mg > Ca > N > K), the relative growth rate of saplings correlated solely with leaf P content (r = 0.52, p = 0.003). At present, reduction in soil water content during the dry season does not seem to be strong enough to cause any effect on photosynthesis of saplings in central Amazonia. This study shows that leaf P content is positively correlated with sapling growth in the central Amazon. Therefore, the positive effect of atmospheric CO2 fertilization on long-term tree growth will depend on the ability of trees to absorb additional amount of P

Relevância:

60.00% 60.00%

Publicador:

Resumo:

OBJECTIVE : To analyze the evolution in the prevalence and determinants of malnutrition in children in the semiarid region of Brazil. METHODS : Data were collected from two cross-sectional population-based household surveys that used the same methodology. Clustering sampling was used to collect data from 8,000 families in Ceará, Northeastern Brazil, for the years 1987 and 2007. Acute undernutrition was calculated as weight/age < -2 standard deviation (SD); stunting as height/age < -2 SD; wasting as weight/height < -2 SD. Data on biological and sociodemographic determinants were analyzed using hierarchical multivariate analyses based on a theoretical model. RESULTS : A sample of 4,513 and 1,533 children under three years of age, in 1987 and 2007, respectively, were included in the analyses. The prevalence of acute malnutrition was reduced by 60.0%, from 12.6% in 1987 to 4.7% in 2007, while prevalence of stunting was reduced by 50.0%, from 27.0% in 1987 to 13.0% in 2007. Prevalence of wasting changed little in the period. In 1987, socioeconomic and biological characteristics (family income, mother’s education, toilet and tap water availability, children’s medical consultation and hospitalization, age, sex and birth weight) were significantly associated with undernutrition, stunting and wasting. In 2007, the determinants of malnutrition were restricted to biological characteristics (age, sex and birth weight). Only one socioeconomic characteristic, toilet availability, remained associated with stunting. CONCLUSIONS : Socioeconomic development, along with health interventions, may have contributed to improvements in children’s nutritional status. Birth weight, especially extremely low weight (< 1,500 g), appears as the most important risk factor for early childhood malnutrition.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Studies of soils in Environmental Protection Areas (EPAs) are of great importance, because they are an essential component of ecosystems, directly interfering in environmental sustainability. The objective of this study was to evaluate the structural quality of soil cultivated with coffee and used as pasture in the Capituva's River microbasin, which is located in the Environmental Protection Area in Coqueiral, south of the state of Minas Gerais. Uniaxial compression test (preconsolidation test) and soil resistance to penetration were used. Undisturbed samples were taken from the surface layer (0-5 cm) of the soils in the area: a typic dystrophic Red Latosol (LVd - Oxisol), a typic eutrophic Red Argisol (PVe - Ultisol), and a typic dystrophic Haplic Cambisol (CXbd - Inceptisol). A significant linear positive correlation was observed between the results of the preconsolidation test and soil resistance to penetration. Load bearing capacity of soil could be estimated accordingly by means of penetration resistance for LVd, PVe, and CXbd. Cambisol - CXbd showed lower loading support capacity and resistance to penetration than LVd and PVe, due to the better crop management in this soil that resulted in higher physical quality which accounts for higher production and environmental sustainability.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The use of a soil induces changes in the physical properties according to the management, tillage intensity and type of crop. The objective of this work was to measure the alterations of some of the soil physical properties and evaluate the physical quality by the S index, an indicator proposed by Dexter (2004), comparing the land uses: eucalyptus plantations at different ages, grazing pasture, annual crops, and an area of preserved secondary vegetation with an area of preserved native forest (National Forest Araripe - NFA) as control. The study was carried out on an Oxisol on the Fazenda Redenção, in Jardim, State of Ceará, Brazil. The experiment was arranged in a completely randomized design with seven treatments and three replications in the layers 0-0.1 and 0.1-0.2 m. The soil was analyzed for the following physical properties: bulk density, particle density, total pore volume, micro and macroporosity, soil water retention curves and water availability. Based on the S index, the hypothesis that the use of a soil deteriorates the physical quality was accepted. Clearly, native forest (NFA) was the land use with the best conditions in all physical properties studied, followed closely by the area reforested with 20 year-old eucalyptus. The use as grazing pasture affected the soil physical conditions most, especially in the surface layer (0-0.1 m), as evidenced by increased bulk density and a substantial reduction in soil porosity, mainly in macroporosity. Microporosity was not influenced by any of the uses and in any layer studied.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Agricultural production systems that include the production of mulch for no-tillage farming and structural improvement of the soil can be considered key measures for agricultural activity in the Cerrado region without causing environmental degradation. In this respect, our work aimed to evaluate the chemical and physical-hydric properties of a dystrophic Red Latosol (Oxisol) in the municipality of Rio Verde, Goias, Brazil, under different soil management systems in the between-crop season of soybean cultivation five years after first planting. The following conditions were evaluated: Brachiaria brizantha cv. Marandu as a cover crop during the between-crop season; Second crop of maize intercropped with Brachiaria ruziziensis; Second crop of grain alone in a no-tillage system; Fallow soil after the soybean harvest; and Forest (natural vegetation) located in an adjacent area. Soil samples up to a depth of 40 cm were taken and used in the assessment of chemical properties and soil structure diagnostics. The results demonstrated that the conversion of native vegetation areas into agricultural fields altered the chemical and physical-hydric properties of the soil at all the depths evaluated, especially up to 10 cm, due to the activity of root systems in the soil structure. Cultivation of B. brizantha as a cover crop during the summer between-crop season increased soil water availability, which is important for agricultural activities in the region under study.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Soils under natural conditions have heavy metals in variable concentrations and there may be an increase in these elements as a result of the agricultural practices adopted. Transport of heavy metals in soil mainly occurs in forms dissolved in the soil solution or associated with solid particles, water being their main means of transport. In this context, the aim of this study was to evaluate the heavy metal and micronutrient content in the soil and in the grapevine plant and fruit under different irrigation strategies. The experiment was carried out in Petrolina, PE, Brazil. The treatments consisted of three irrigation strategies: full irrigation (FI), regulated deficit irrigation (RDI), and deficit irrigation (DI). During the period of grape maturation, soil samples were collected at the depths of 0-10, 10-20, 20-40, 40-60, and 60-80 cm. In addition, leaves were collected at the time of ripening of the bunches, and berries were collected at harvest. Thus, the heavy metal and micronutrient contents were determined in the soil, leaves, and berries. The heavy metal and micronutrient contents in the soil showed a stochastic pattern in relation to the different irrigation strategies. The different irrigation strategies did not affect the heavy metal and micronutrient contents in the vine leaves, and they were below the contents considered toxic to the plant. In contrast, the greater availability of water in the FI treatment favored a greater Cu content in the grape, which may be a risk to vines, causing instability and turbidity. Thus, adoption of deficit irrigation is recommended so as to avoid compromising the stability of tropical wines of the Brazilian Northeast.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Plant species that naturally occur in the Brazilian Caatinga(xeric shrubland) adapt in several ways to these harsh conditions, and that can be exploited to increase crop production. Among the strategic adaptations to confront low water availability, desiccation tolerance stands out. Up to now, the association of those species with beneficial soil microorganisms is not well understood. The aim of this study was to characterize Tripogon spicatusdiazotrophic bacterial isolates from the Caatingabiome and evaluate their ability to promote plant growth in rice. Sixteen bacterial isolates were studied in regard to their taxonomic position by partial sequencing of the 16S rRNA gene, putative diazotrophic capacity, in vitro indole-acetic acid (IAA) production and calcium phosphate solubilization, metabolism of nine different C sources in semi-solid media, tolerance to different concentrations of NaCl to pHs and intrinsic resistance to nine antibiotics. Finally, the ability of the bacterial isolates to promote plant growth was evaluated using rice (Oryza sativa) as a model plant. Among the 16 isolates evaluated, eight of them were classified as Enterobacteriaceae members, related to Enterobacter andPantoeagenera. Six other bacteria were related toBacillus, and the remaining two were related toRhizobiumand Stenotrophomonas.The evaluation of total N incorporation into the semi-solid medium indicated that all the bacteria studied have putative diazotrophic capacity. Two bacteria were able to produce more IAA than that observed for the strain BR 11175Tof Herbaspirillum seropedicae.Bacterial isolates were also able to form a microaerophilic pellicle in a semi-solid medium supplemented with different NaCl concentrations up to 1.27 mol L-1. Intrinsic resistance to antibiotics and the metabolism of different C sources indicated a great variation in physiological profile. Seven isolates were able to promote rice growth, and two bacteria were more efficient than the reference strainAzospirillum brasilense, Ab-V5. The results indicate the potential of T. spicatus as native plant source of plant growth promoting bacteria.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Field experiments involving upland rice genotypes, sown in various dates in late season, were carried out to assess the relationship of carbon isotope discrimination with grain yield and drought resistance. In each one of the three years, one trial was kept under good water availability, while other suffered water shortage for a period of 18-23 days, encompassing panicle emergence and flowering. Drought stress reduced carbon isotope discrimination measured on soluble sugars (deltas) extracted from stem uppermost internode at the end of the imposition period, but had relatively less effect on bulk dry matter of leaves, sampled at the same period, or that of uppermost internodes and grains, sampled at harvest. The drought-induced reduction in deltas was accompanied of reduced spikelet fertility and grain yield. In the three trials subjected to drought, genotypes with the highest yield and spikelet fertility had the lowest deltas. However, this relationship was weak and it was concluded that deltas is not a sufficiently reliable indicator of rice drought resistance to be useful as a screening test in breeding programs. On the other hand, grain yield and spikelet fertility of genotypes which were the soonest to reach 50% flowering within the drought imposition period, were the least adversely affected by drought. Then, timing of drought in relation to panicle emergence and to flowering appeared to be a more important cause of yield variation among genotypes than variation in deltas.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The objective of this work was to adapt the CROPGRO model, which is part of the DSSAT system, for simulating the cowpea (Vigna unguiculata) growth and development under soil and climate conditions of the Baixo Parnaíba region, Piauí State, Brazil. In the CROPGRO, only input parameters that define crop species, cultivars, and ecotype were changed in order to characterize the cowpea crop. Soil and climate files were created for the considered site. Field experiments without water deficit were used to calibrate the model. In these experiments, dry matter (DM), leaf area index (LAI), yield components and grain yield of cowpea (cv. BR 14 Mulato) were evaluated. The results showed good fit for DM and LAI estimates. The medium values of R² and medium absolute error (MAE) were, respectively, 0.95 and 264.9 kg ha-1 for DM, and 0.97 and 0.22 for LAI. The difference between observed and simulated values of plant phenology varied from 0 to 3 days. The model also presented good performance for yield components simulation, excluding 100-grain weight, for which the error ranged from 20.9% to 34.3%. Considering the medium values of crop yield in two years, the model presented an error from 5.6%.