66 resultados para Venom gland
Resumo:
Differences among the metapleural glands of four female castes of Atta bisphaerica Forel, 1908, A. capiguara Gonçalves, 1944 and A. sexdens rubropilosa Forel, 1908 were examined by scanning electron microscope. There were no differences in gland size between the same castes of these species, although the opening gland in A. sexdens rubropilosa had been twice as large as A. bisphaerica. The relative size and functional significance of the metapleural gland among different castes is discussed and similarities between these and the other Formicidae till now studied is presented.
Resumo:
The present study compares the metanotal gland through scanning electron microscopy in five species of Eidmanacris: E. corumbatai Garcia, 1998, E. alboannulata (Piza, 1960), E. dissimilis Desutter-Grandcolas, 1995, E. larvaeformis (Chopard, 1938) and Eidmanacris sp. The general external configuration of the gland was determined by the presence of two median projections with apical opening and a cluster of bristles just above these projections. Although there is a general pattern for this gland, each species has its own pattern, which can be defined mainly by the arrangement of the bristles and the position of the median projections. Our results suggest the taxonomical importance of these structures, which should be better analyzed when describing species of the genus Eidmanacris. In addition, while observing the reproductive behavior of these species, we concluded that the release of this gland secretion is important for the success of mating.
Resumo:
Triatomines are hematophagous bugs of medical interest in South and Central America, where they may act as invertebrate hosts of the hemoflagellate protozoa Trypanosoma cruzi (the causative of Chagas’ disease) and Trypanosoma rangeli (Tejera, 1920). Triatomines of Rhodnius genus have salivary gland formed by two close and independent units: the principal and the accessory. This gland secretes saliva that abounds in substances that facilitate and permit feeding. Despite this importance, there are few reports on its cytochemistry. In purpose of amplifying this understanding, in this work it was investigated the nuclear structures (chromatin and nucleolar corpuscles) of salivary gland cells of Rhodnius neglectus (Lent, 1954) and Rhodnius prolixus (Stål, 1859). The salivary glands were removed from adult insects, fixed and submitted to different cytochemical methods: lacto-acetic orcein, silver ion impregnation, Feulgen reaction, Toluidine Blue, Variant method of critical electrolyte concentration and C-banding. The results evidenced predominance of binucleated cells, with bulky and polyploid nucleus, decondensed chromatin and a large nucleolar area. In addition, cytoplasmic metachromasy and a clear association between nucleolar and heterochromatic corpuscles were observed. Such characteristics were associated with intense synthesis activity to produce saliva. Besides, the heterochromatic corpuscles observed with C Banding permitted the differentiation of sexes and species.
Resumo:
Fígado, veneno e sôro sanguíneo de "Bothrops jararaca" foram estudados por meio da eletroforese em papel e determinação de atividades enzimáticas. Xantina oxidase e deshidrogenase foram encontradas sòmente no fígado das cobras. A análise espectrográfica do veneno e do sôro confirmam os resultados negativos obtidos para xantina oxidase uma vez que não foi encontrado molibdêneo. L-amino ácido oxidase foi determinada no fígado, sÔro e veneno. A eletroforese em papel do sôro sanguíneo mostrou que existem 7 frações proteicas, sendo que duas apresentam fluorescência característica de flavinas, quando expostas à luz ultra-violeta. Em vista dos resultados obtidos é concluido que as flavinas do sôro e do veneno de Bothrops jararaca estão na maior parte ligadas às proteínas. Estas flavinas combinadas parecem estar sob a forma de FAD (flavina adenina dinucleotídeo) fazendo parte do grupo prostético da L-amino ácido oxidase, uma vez que não foi encontrada nenhuma atividade de xantina oxidase.
Resumo:
We have observed that several plants used popularly as anti-snake venom show anti-inflammatory activity. From the list prepared by Rizzini, Mors and Pereira some species have been selected and tested for analgesic activity (number of contortions) and anti-inflammatory activity (Evans blue dye diffusion - 1% solution) according to Whittle's technique (intraperitoneal administration of 0.1 N-acetic acid 0.1 ml/10 g) in mice. Previous oral administration of a 10% infusion (dry plant) or 20% (fresh plant) corresponding to 1 or 2 g/Kg of Apuleia leiocarpa, Casearia sylvestris, Brunfelsia uniflora, Chiococca brachiata, Cynara scolymus, Dorstenia brasiliensis, Elephantopus scaber, Marsypianthes chamaedrys, Mikania glomerata and Trianosperma tayuya demonstrated analgesic and/or anti-inflammatory activities of varied intensity
Resumo:
Rats experimentally infected with Trypanosoma cruzi Y strain exhibited hypertrophy of the submandibular gland at 18 days after infection.SDS-PAGE of infected rats saliva revealed the presence of an additional band with an apparent molecular weight of about 13KDa. Electrophoresis of protein salivaand immunochemical analysis with antibody against rat cystatin S confirmed that the protein was identical to that induced by beta adrenergic stimulation.
Resumo:
The number of eggs laid per snail in Bradybaena similaris and the nucleic acids (DNA and RNA) in the albumen gland and ovotestis were quantified in snails infected with sporocysts of the digenetic trematode Eurytrema coelomaticum. The total number of eggs laid per mollusc was reduced by 96.32% at the end of the larval development. The DNA concentration increased by 700% and the RNA concentration was reduced by 8,38% by the time when the daughter sporocysts of E. coelomaticum were released from B. similaris. The relation between these values and the inhibition of the reproduction observed in infected molluscs is discussed.
Resumo:
Using high performance liquid chromatography (HPLC) analysis it was possible to determine simultaneously the concentration of organic acids (pyruvate, lactate, succinate, fumarate, malate, acetate, propionate, acetoacetate, and ß-hydroxybutyrate) in the digestive gland and the extracellular concentration of these same acids in the hemolymph of estivating Biomphalaria glabrata, the intermediate host of Schistosoma mansoni. After a 7 day period of estivation, there was a significant increase in the tissue levels of lactate, succinate, malate and acetate compared to non-estivating snails. After 14 days of estivation, the levels of lactate and acetate were also significantly elevated. The hemolymph concentrations of pyruvate and acetate increased significantly after 7 days and acetate concentrations continued to be significantly increased up to 14 days of estivation. The other organic acids studied, such as ketone body acetoacetate and ß-hydroxybutyrate or the volatile acid propionate, did not accumulate. Their tissue concentrations, however, increased on the 7th day of estivation and reached normal levels within two weeks of estivation for some of them. One should take into consideration how the reduction in metabolism can be handled under aerobic conditions, and what role anaerobic pathways may play in both energy formation and redox balance processes.
Resumo:
Previous reports showed that Lutzomyia longipalpis saliva exacerbate Leishmania braziliensis infection in mice. The sand fly Lu. whitmani is one of the vectors of L. (Viannia) braziliensis (LVb), a causative agent of cutaneous leishmaniasis in the State of Ceará, Brazil. To determine whether saliva of Lu. whitmani could increase the infectivity of LVb in mice, we inoculated groups of BALB/c mice with LVb promastigotes in the presence or absence of the salivary glands lysate from Lu. whitmani. We found that coinjection with Lu. whitmani saliva increased size but not longevity of cutaneous LVb lesions in BALB/c mice, since the formed lesions gradually resolved. The mechanism(s) by which Lu. whitmani saliva might exacerbate LVb infection in BALB/c mice is speculated.
Resumo:
Cells die through a programmed process or accidental death, know as apoptosis or necrosis, respectively. Bothrops jararaca is a snake whose venom inhibits the growth of Trypanosoma cruzi epimastigote forms causing mitochondrion swelling and cell death. The aim of the present work was to determine the type of death induced in epimastigotes of T. cruzi by this venom. Parasite growth was inhibited after venom treatment, and 50% growth inhibition was obtained with 10 µg/ml. Ultrastructural observations confirmed mitochondrion swelling and kinetoplast disorganization. Furthermore, cytoplasmic condensation, loss of mitochondrion membrane potential, time-dependent increase in phosphatidylserine exposure at the outer leaflet plasma membrane followed by permeabilization, activation of caspase like protein and DNA fragmentation were observed in epimastigotes throughout a 24 h period of venom treatment. Taken together, these results indicate that the stress induced in epimastigote by this venom, triggers a programmed cell death process, similar to metazoan apoptosis, which leads to parasite death.
Resumo:
Metalloproteinases are abundant enzymes in crotaline and viperine snake venoms. They are relevant in the pathophysiology of envenomation, being responsible for local and systemic hemorrhage frequently observed in the victims. Snake venom metalloproteinases (SVMP) are zinc-dependent enzymes of varying molecular weights having multidomain organization. Some SVMP comprise only the proteinase domain, whereas others also contain a disintegrin-like domain, cysteine-rich, and lectin domains. They have strong structural similarities with both mammalian matrix metalloproteinases (MMP) and members of ADAMs (a disintegrin and metalloproteinase) group. Besides hemorrhage, snake venom metalloproteinase induce local myonecrosis, skin damage, and inflammatory reaction in experimental models. Local inflammation is an important characteristic of snakebite envenomations inflicted by viperine and crotaline snake species. Thus, in the recent years there is a growing effort to understand the mechanisms responsible for SVMP-induced inflammatory reaction and the structural determinants of this effect. This short review focuses the inflammatory effects evoked by SVMP.
Delay in maturation of the submandibular gland in Chagas disease correlates with lower DNA synthesis
Resumo:
It has been demonstrated that the acute phase of Trypanosoma cruzi infection promotes several changes in the oral glands. The present study examined whether T. cruzi modulates the expression of host cell apoptotic or mitotic pathway genes. Rats were infected with T. cruzi then sacrificed after 18, 32, 64 or 97 days, after which the submandibular glands were analyzed by immunohistochemistry. Immunohistochemical analyses using an anti-bromodeoxyuridine antibody showed that, during acute T. cruzi infection, DNA synthesizing cells in rat submandibular glands were lower than in non-infected animals (p < 0.05). However, after 64 days of infection (chronic phase), the number of immunolabeled cells are similar in both groups. However, immunohistochemical analysis of Fas and Bcl-2 expression did not find any difference between infected and non-infected animals in both the acute and chronic stages. These findings suggest that the delay in ductal maturation observed at the acute phase of Chagas disease is correlated with lower expression of DNA synthesis genes, but not apoptotic genes.
Resumo:
It has been demonstrated that parotid glands of rats infected with Trypanosoma cruzi present severe histological alterations; changes include reduction in density and volume of the acini and duct systems and an increase in connective tissue. We evaluated the association between morphological changes in parotid glands, circulating testosterone levels and epidermal growth factor receptor (EGF-R) expression in experimental Chagas disease in rats. Animals at 18 days of infection (acute phase) showed a significant decrease in body weight, serum testosterone levels and EGF-R expression in the parotid gland compared with a control group. Since decreases in body weight could lead to a reduction in circulating testosterone concentration, we believe that the reduction in EGF-R expression in parotid glands of infected rats is due to alterations in testosterone levels and atrophy of parotid glands is caused by changes in EGF-R expression. Additionally, at 50 days (chronic phase) of infection parotid glands showed a normal histological aspect likely due to the normalization of the body weight. These findings suggest that the testosterone-EGF-R axis is involved in the histological changes.
Resumo:
In the present paper, we developed a primary culture of Rhodnius prolixus salivary gland and main salivary canal cells. Cells remained viable in culture for 30 days. Three types of cells were indentified in the salivary gland cultures, with binuclear cells being the most abundant. The supernatants of salivary cultures contained mainly 16-24 kDa proteins and presented anticoagulant and apyrase activities. Secretion vesicles were observed budding from the cellular monolayer of the main salivary canal cells. These results indicate that R. prolixus salivary proteins may be produced in vitro and suggest that the main salivary canal may have a possible secretory role.
Resumo:
In this study, anticoagulant activity was detected in salivary gland homogenates (SGHs) of Thyrsopelma guianense (Diptera: Simuliidae). The SGH yielded 1.07 μg ± 0.03 (n = 15) of total soluble protein per pair of glands. In addition, following SDS-PAGE (12.5% gel) and silver nitrate staining, 12 polypeptides with molecular weights ranging from 14-69 kDa were detected in all physiological ages analyzed (12 h, 24 h, 48 h and 72 h following emergence). Coagulation bioassays showed that the SGHs had activities that interacted at all levels of coagulation (the intrinsic, extrinsic and common pathways), by extending the plasma recalcification time, prothrombin time, thrombin time. This is the first report on the activity of salivary gland proteins from the main vector of onchocerciasis in Brazil. We also suggest detailed studies on the morphology and function of the salivary glands in order to understand the role of these proteins in host/vector interactions.