172 resultados para Vegetation Index
Resumo:
Soil properties have an enormous impact on economic and environmental aspects of agricultural production. Quantitative relationships between soil properties and the factors that influence their variability are the basis of digital soil mapping. The predictive models of soil properties evaluated in this work are statistical (multiple linear regression-MLR) and geostatistical (ordinary kriging and co-kriging). The study was conducted in the municipality of Bom Jardim, RJ, using a soil database with 208 sampling points. Predictive models were evaluated for sand, silt and clay fractions, pH in water and organic carbon at six depths according to the specifications of the consortium of digital soil mapping at the global level (GlobalSoilMap). Continuous covariates and categorical predictors were used and their contributions to the model assessed. Only the environmental covariates elevation, aspect, stream power index (SPI), soil wetness index (SWI), normalized difference vegetation index (NDVI), and b3/b2 band ratio were significantly correlated with soil properties. The predictive models had a mean coefficient of determination of 0.21. Best results were obtained with the geostatistical predictive models, where the highest coefficient of determination 0.43 was associated with sand properties between 60 to 100 cm deep. The use of a sparse data set of soil properties for digital mapping can explain only part of the spatial variation of these properties. The results may be related to the sampling density and the quantity and quality of the environmental covariates and predictive models used.
Resumo:
Soil information is needed for managing the agricultural environment. The aim of this study was to apply artificial neural networks (ANNs) for the prediction of soil classes using orbital remote sensing products, terrain attributes derived from a digital elevation model and local geology information as data sources. This approach to digital soil mapping was evaluated in an area with a high degree of lithologic diversity in the Serra do Mar. The neural network simulator used in this study was JavaNNS and the backpropagation learning algorithm. For soil class prediction, different combinations of the selected discriminant variables were tested: elevation, declivity, aspect, curvature, curvature plan, curvature profile, topographic index, solar radiation, LS topographic factor, local geology information, and clay mineral indices, iron oxides and the normalized difference vegetation index (NDVI) derived from an image of a Landsat-7 Enhanced Thematic Mapper Plus (ETM+) sensor. With the tested sets, best results were obtained when all discriminant variables were associated with geological information (overall accuracy 93.2 - 95.6 %, Kappa index 0.924 - 0.951, for set 13). Excluding the variable profile curvature (set 12), overall accuracy ranged from 93.9 to 95.4 % and the Kappa index from 0.932 to 0.948. The maps based on the neural network classifier were consistent and similar to conventional soil maps drawn for the study area, although with more spatial details. The results show the potential of ANNs for soil class prediction in mountainous areas with lithological diversity.
Resumo:
O objetivo deste trabalho foi avaliar, com um sensor ótico ativo, o comportamento do índice de vegetação por diferença normalizada (NDVI - "normalized difference vegetation index"), nas culturas de trigo, triticale, cevada e milho. Cinco experimentos foram conduzidos no Paraná e São Paulo, com variação de classes de solo, doses e fontes de N, e variedades de trigo. As seguintes variáveis foram avaliadas: NDVI, teor de N foliar, matéria seca e produtividade das culturas. Análises de regressões foram realizadas entre as doses de N aplicadas e NDVI, teor de N foliar, matéria seca e produtividade. Análises de correlação entre as variáveis foram realizadas. O trigo, triticale e cevada apresentaram resposta às aplicações de doses crescentes de N, pelo aumento nas leituras do NDVI, no teor de N foliar e na produtividade. Medido pelo sensor ótico ativo utilizado, o NDVI apresenta alto potencial para manejo do N nas culturas do trigo, triticale e cevada, e baixo potencial para a cultura do milho. Há interferência das variedades de trigo nas leituras do sensor ótico ativo.
Resumo:
O objetivo deste trabalho foi avaliar dados multitemporais, obtidos pelo sensor "moderate resolution imaging spectroradiometer" (MODIS), para o estudo da dinâmica espaço-temporal de duas sub-regiões do bioma Pantanal. Foram utilizadas 139 imagens "enhanced vegetation index" (EVI), do produto MOD13 "vegetation index", dados de altimetria oriundos do "shuttle radar topography mission" (SRTM) e dados de precipitação do "tropical rainfall measuring mission" (TRMM). Para a redução da dimensionalidade dos dados, as imagens MODIS-EVI foram amostradas com base nas curvas de nível espaçadas em 10 m. Foram aplicadas as técnicas de análise de autocorrelação e análise de agrupamentos aos dados das amostras, e a análise de componentes principais na área total da imagem. Houve dependência tanto temporal quanto espacial da resposta espectral com a precipitação. A análise de agrupamentos apontou a presença de dois grupos, o que indicou a necessidade da análise completa da área. A análise de componentes principais permitiu diferenciar quatro comportamentos distintos: as áreas permanentemente alagadas; as áreas não inundáveis, compostas por vegetação; as áreas inundáveis com maior resposta de vegetação; e áreas com vegetação ripária.
Resumo:
The objective of this work was to develop a procedure to estimate soybean crop areas in Rio Grande do Sul state, Brazil. Estimations were made based on the temporal profiles of the enhanced vegetation index (Evi) calculated from moderate resolution imaging spectroradiometer (Modis) images. The methodology developed for soybean classification was named Modis crop detection algorithm (MCDA). The MCDA provides soybean area estimates in December (first forecast), using images from the sowing period, and March (second forecast), using images from the sowing and maximum crop development periods. The results obtained by the MCDA were compared with the official estimates on soybean area of the Instituto Brasileiro de Geografia e Estatística. The coefficients of determination ranged from 0.91 to 0.95, indicating good agreement between the estimates. For the 2000/2001 crop year, the MCDA soybean crop map was evaluated using a soybean crop map derived from Landsat images, and the overall map accuracy was approximately 82%, with similar commission and omission errors. The MCDA was able to estimate soybean crop areas in Rio Grande do Sul State and to generate an annual thematic map with the geographic position of the soybean fields. The soybean crop area estimates by the MCDA are in good agreement with the official agricultural statistics.
Análise quantitativa de parâmetros biofísicos de bacia hidrográfica obtidos por sensoriamento remoto
Resumo:
O objetivo deste trabalho foi avaliar quantitativamente os parâmetros biofísicos obtidos por sensoriamento remoto, para a área de abrangência da Bacia Hidrográfica do Rio Tapacurá, em Pernambuco. Utilizaram-se imagens do TM‑Landsat 5 de 10/7/1989, 6/7/2005 e 29/8/2007. As imagens foram registradas pela correção geométrica polinomial de primeira ordem. Foram realizadas as etapas de calibração radiométrica, reflectância, albedo planetário e transmissividade e, subsequentemente, geraram-se cartas temáticas de albedo e de temperatura da superfície, e do índice de vegetação melhorado ("enhanced vegetation index", EVI). O albedo da superfície apresentou valores médios crescentes entre as imagens obtidas em 1989 e 2005, o que indica expansão territorial urbana. A imagem de 29/8/2007 mostrou maior temperatura da superfície, seguida das temperaturas mostradas nas imagens de 10/7/1989 e 6/7/2005, e os maiores valores foram os das malhas urbanas. A imagem de 1989 mostrou o maior valor médio de EVI, o que indica ter havido, naquela data, maior presença de vegetação.
Resumo:
The objective of this work was to evaluate a simple, semi‑automated methodology for mapping cropland areas in the state of Mato Grosso, Brazil. A Fourier transform was applied over a time series of vegetation index products from the moderate resolution imaging spectroradiometer (Modis) sensor. This procedure allows for the evaluation of the amplitude of the periodic changes in vegetation response through time and the identification of areas with strong seasonal variation related to crop production. Annual cropland masks from 2006 to 2009 were generated and municipal cropland areas were estimated through remote sensing. We observed good agreement with official statistics on planted area, especially for municipalities with more than 10% of cropland cover (R² = 0.89), but poor agreement in municipalities with less than 5% crop cover (R² = 0.41). The assessed methodology can be used for annual cropland mapping over large production areas in Brazil.
Resumo:
The objective of this work was to evaluate the use of multispectral remote sensing for site-specific nitrogen fertilizer management. Satellite imagery from the advanced spaceborne thermal emission and reflection radiometer (Aster) was acquired in a 23 ha corn-planted area in Iran. For the collection of field samples, a total of 53 pixels were selected by systematic randomized sampling. The total nitrogen content in corn leaf tissues in these pixels was evaluated. To predict corn canopy nitrogen content, different vegetation indices, such as normalized difference vegetation index (NDVI), soil-adjusted vegetation index (Savi), optimized soil-adjusted vegetation index (Osavi), modified chlorophyll absorption ratio index 2 (MCARI2), and modified triangle vegetation index 2 (MTVI2), were investigated. The supervised classification technique using the spectral angle mapper classifier (SAM) was performed to generate a nitrogen fertilization map. The MTVI2 presented the highest correlation (R²=0.87) and is a good predictor of corn canopy nitrogen content in the V13 stage, at 60 days after cultivating. Aster imagery can be used to predict nitrogen status in corn canopy. Classification results indicate three levels of required nitrogen per pixel: low (0-2.5 kg), medium (2.5-3 kg), and high (3-3.3 kg).
Resumo:
The objective of this work was to evaluate the seasonal variation of soil cover and rainfall erosivity, and their influences on the revised universal soil loss equation (Rusle), in order to estimate watershed soil losses in a temporal scale. Twenty-two TM Landsat 5 images from 1986 to 2009 were used to estimate soil use and management factor (C factor). A corresponding rainfall erosivity factor (R factor) was considered for each image, and the other factors were obtained using the standard Rusle method. Estimated soil losses were grouped into classes and ranged from 0.13 Mg ha-1 on May 24, 2009 (dry season) to 62.0 Mg ha-1 on March 11, 2007 (rainy season). In these dates, maximum losses in the watershed were 2.2 and 781.5 Mg ha-1 , respectively. Mean annual soil loss in the watershed was 109.5 Mg ha-1 , but the central area, with a loss of nearly 300.0 Mg ha-1 , was characterized as a site of high water-erosion risk. The use of C factor obtained from remote sensing data, associated to corresponding R factor, was fundamental to evaluate the soil erosion estimated by the Rusle in different seasons, unlike of other studies which keep these factors constant throughout time.
Resumo:
Composições de 16 dias de índices de vegetação do sensor MODerate resolution Imaging Spectroradiometer (MODIS), com resolução espacial de 1km, a bordo dos satélites TERRA e AQUA, foram usadas para caracterizar a dinâmica sazonal em 2004 de cinco fitofisionomias de Cerrado e analisar a sua separabilidade espectral. Os índices Normalized Difference Vegetation Index (NDVI) e Enhanced Vegetation Index (EVI), calculados a partir dos dados dos sensores de ambas as plataformas e de uma base comum de pixels, foram comparados entre si. Os resultados indicaram que: (a) dentre as fitofisionomias estudadas, a Floresta Estacional decídua apresentou uma dinâmica sazonal muito marcante em função da perda de folhas da estação chuvosa para a seca (substancial redução nos índices) e do rápido verdejamento com o início da precipitação no final de outubro (rápido incremento de NDVI e EVI); (b) o NDVI mostrou maior variabilidade entre as classes de vegetação do que o EVI apenas na estação seca; (c) a discriminação entre as fitofisionomias melhorou da estação chuvosa para a seca; (d) o NDVI foi mais eficiente do que o EVI para discriminar as classes de vegetação na estação seca, ocorrendo o contrário na estação chuvosa; e (e) na maioria das datas selecionadas para estudo, não houve diferenças estatisticamente significativas entre os índices de vegetação gerados de ambas as plataformas, apesar das variações na qualidade dos pixels selecionados para as composições de 16 dias e na geometria de iluminação e de visada.
Resumo:
View angle and directional effects significantly affect reflectance and vegetation indices, especially when daily images collected by large field-of-view (FOV) sensors like the Moderate Resolution Imaging Spectroradiometer (MODIS) are used. In this study, the PROSAIL radiative transfer model was chosen to evaluate the impact of the geometry of data acquisition on soybean reflectance and two vegetation indices (Normalized Difference Vegetation Index - NDVI and Enhanced Vegetation Index -EVI) by varying biochemical and biophysical parameters of the crop. Input values for PROSAIL simulation were based on the literature and were adjusted by the comparison between simulated and real satellite soybean spectra acquired by the MODIS/Terra and hyperspectral Hyperion/Earth Observing-One (EO-1). Results showed that the influence of the view angle and view direction on reflectance was stronger with decreasing leaf area index (LAI) and chlorophyll concentration. Because of the greater dependence on the near-infrared reflectance, the EVI was much more sensitive to viewing geometry than NDVI presenting larger values in the backscattering direction. The contrary was observed for NDVI in the forward scattering direction. In relation to the LAI, NDVI was much more isotropic for closed soybean canopies than for incomplete canopies and a contrary behavior was verified for EVI.
Resumo:
This research aims at studying spatial autocorrelation of Landsat/TM based on normalized difference vegetation index (NDVI) and green vegetation index (GVI) of soybean of the western region of the State of Paraná. The images were collected during the 2004/2005 crop season. The data were grouped into five vegetation index classes of equal amplitude, to create a temporal map of soybean within the crop cycle. Moran I and Local Indicators of Spatial Autocorrelation (LISA) indices were applied to study the spatial correlation at the global and local levels, respectively. According to these indices, it was possible to understand the municipality-based profiles of tillage as well as to identify different sowing periods, providing important information to producers who use soybean yield data in their planning.
Resumo:
RESUMO O Estado do Paraná caracteriza-se por uma grande variabilidade de épocas de semeadura (DS) e, consequentemente, pelo desenvolvimento máximo vegetativo (DMDV), colheita (DC) e ciclo (CI) para a cultura da soja. O objetivo deste trabalho foi estimar essas datas para o período de primavera-verão do ano-safra de 2011/2012, por meio de séries temporais de imagens do Índice de Vegetação Realçado (do inglês Enhanced Vegetation Index - EVI) do sensor Modis (Moderate Resolution Imaging Spectroradiometer). Gerou-se um perfil espectrotemporal médio de EVI, considerando todos os pixels mapeados como soja dentro de cada município. Estes dados serviram de entrada no software Timesat para estimar os decêndios do ciclo da cultura (DS, DMDV, DC e CI) por municípios. Os resultados mostraram que existe grande variabilidade de datas de plantio em diferentes mesorregiões do Estado. Verificaram-se também divergências entre os resultados encontrados e os dados oficiais de DS e DC. A maior parte da semeadura (65,16%) esteve entre o terceiro decêndio de outubro e o primeiro decêndio de novembro. A maior parte da área de soja do Estado do Paraná (65,46%) teve seu DMDV em janeiro e colheita em março (53,92%).
Resumo:
ABSTRACT One of the most relevant activities of Brazilian economy is agriculture. Among the main crops in Brazil, rice is one of high relevance. The state of Rio Grande do Sul, in Southern Brazil, is responsible for 68.7% of domestic production (IBGE, 2013). The goal of this study was to develop a low-cost methodology with a regional scope to identify suitable areas for irrigated rice cropping in this state, using spectro-temporal behavior of vegetation index by means of MODIS images and HAND model. The rice-cropped area of this study was the southern half of the State. Using the HAND model, flood areas were mapped to identify irrigated rice cultivation. We used multi-temporal images of vegetation index from MODIS sensor, covering the period from August 2001 to May 2012. To assess the results, we used data collected in the fields and cropped area information from IBGE. The results showed that the proposed methodology was satisfactory, with Kappa 0.92 and global accuracy of 98.18%. As result, MODIS sensor data and flood areas delineation by means of HAND model generated the estimate irrigated rice area for the area of study.
Resumo:
Brazil has high climate, soil and environmental diversity, as well as distinct socioeconomic and political realities, what results in differences among the political administrative regions of the country. The objective of this study was to determine spatial distribution of the physical, climatic and socioeconomic aspects that best characterize the production of dairy goats in Brazil. Production indices of milk per goat, goat production, milk production, as well as temperature range, mean temperature, precipitation, normalized difference vegetation index, relative humidity, altitude, agricultural farms; farms with native pasture, farms with good quality pasture, farms with water resources, farms that receive technical guidance, family farming properties, non-familiar farms and the human development index were evaluated. The multivariate analyses were carried out to spatialize climatic, physical and socioeconomic variables and so differenciate the Brazilian States and Regions. The highest yields of milk and goat production were observed in the Northeast. The Southeast Region had the second highest production of milk, followed by the South, Midwest and North. Multivariate analysis revealed distinctions between clusters of political-administrative regions of Brazil. The climatic variables were most important to discriminate between regions of Brazil. Therefore, it is necessary to implement animal breeding programs to meet the needs of each region.