19 resultados para Vegetated plane


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A description of Biomphalaria obstructa (Morelet, 1849), based on specimens collected at its type locality - isla del carmen, state of Campeche, Mexico - is presented. The Shell is small, 13 mm in diameter, 3.5 mm in width and with 5.75 whorls in the largest specimen, thin, moderately lustrous and translucent, horn-colored. Whorls increasing regularly (neither slowly nor rapidly) in diameter, rounded on the periphery side, bluntly angular on the left. Suture well-marked, deeper on the left. Right side widely concave, with first whorl deeply situated and partly hidden by the next. Left side shallower than right one, largely flattened, with first whorl plaintly visible. Aperture roundly heart-shaped, usually in the same plane as the body whorl but somewhat deflected to the left (less frequently to the right) in some specimens. Peristome sharp, seldom blunt; a distinct callus on the parietal wall. A number of young shells develop one set (seldom more) of apertural lamellae which tend to be resorbed as the shell grows. Absence of renal ridge. Ovotestis with about 70 mostly unbrached diverticula. Seminal vesicle beset with well-developed knoblike to fingerlike diverticula. Vaginal pouch more or less developed. Spermatheca club-shaped when empty, egg-shaped when full, and with intermediate forms between those extremes. Spermathecal body usually somewhat longer than the duct. Prostate with 7 to 20 (mean 12.06 ± 2.51) usually short diverticula which give off plumpish branches spreading out in a fan shape and overlapping to some extent their immediate neighbors. Foremost prostatic diverticulum nearly always partially or completely inserted between the spermathecal body and the uterine wall. Penial sheath consistently narrower and shorter than the prepuce. Muscular coat of the penis consisting of an inner longitudinal and an outer circular layers. Ratios between organ lengths: caudal to cephalic parts of female duct = 0.55 to 1.37 (mean 0.85 +- 0.17); cephalic parte of female duct to penial complex = 1.36 to 2.81 ((mean 1.90 +- 0.33); penial sheath to prepuce = 042 to 0.96 (mean 0.67 +- 0.13). Comparison with Morelet’s type specimens of Planorbis orbiculus and P. retusus points to the identity of those nominal species with B. obstructa.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Intensification of agricultural production without a sound management and regulations can lead to severe environmental problems, as in Western Santa Catarina State, Brazil, where intensive swine production has caused large accumulations of manure and consequently water pollution. Natural resource scientists are asked by decision-makers for advice on management and regulatory decisions. Distributed environmental models are useful tools, since they can be used to explore consequences of various management practices. However, in many areas of the world, quantitative data for model calibration and validation are lacking. The data-intensive distributed environmental model AgNPS was applied in a data-poor environment, the upper catchment (2,520 ha) of the Ariranhazinho River, near the city of Seara, in Santa Catarina State. Steps included data preparation, cell size selection, sensitivity analysis, model calibration and application to different management scenarios. The model was calibrated based on a best guess for model parameters and on a pragmatic sensitivity analysis. The parameters were adjusted to match model outputs (runoff volume, peak runoff rate and sediment concentration) closely with the sparse observed data. A modelling grid cell resolution of 150 m adduced appropriate and computer-fit results. The rainfall runoff response of the AgNPS model was calibrated using three separate rainfall ranges (< 25, 25-60, > 60 mm). Predicted sediment concentrations were consistently six to ten times higher than observed, probably due to sediment trapping along vegetated channel banks. Predicted N and P concentrations in stream water ranged from just below to well above regulatory norms. Expert knowledge of the area, in addition to experience reported in the literature, was able to compensate in part for limited calibration data. Several scenarios (actual, recommended and excessive manure applications, and point source pollution from swine operations) could be compared by the model, using a relative ranking rather than quantitative predictions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the upper Jequitinhonha valley, state of Minas Gerais, Brazi, there are large plane areas known as "chapadas", which are separated by areas dissected by tributaries of the Jequitinhonha and Araçuaí rivers. These dissected areas have a surface drainage system with tree, shrub, and grass vegetation, more commonly known as "veredas", i.e., palm swamps. The main purpose of this study was to characterize soil physical, chemical and morphological properties of a representative toposequence in the watershed of the Vereda Lagoa do Leandro, a swamp near Minas Novas, MG, on "chapadas", the highlands of the Alto Jequitinhonha region Different soil types are observed in the landscape: at the top - Typic Haplustox (LVA), in the middle slope - Xanthic Haplustox (LA), at the footslope - Xanthic Haplustox, gray color, here called "Gray Haplustox" ("LAC") and, at the bottom of the palm swamp - Typic Albaquult (GXbd). These soils were first morphologically described; samples of disturbed and undisturbed soils were collected from all horizons and subhorizons, to evaluate their essential physical and chemical properties, by means of standard determination of Fe, Al, Mn, Ti and Si oxides after sulfuric extraction. The contents of Fe, Al and Mn, extracted with dithionite-citrate-bicarbonate and oxalate treatments, were also determined. In the well-drained soils of the slope positions, the typical morphological, physical and chemical properties of Oxisols were found. The GXbd sample, from the bottom of the palm swamp, is grayish and has high texture gradient (B/A) and massive structure. The reduction of the proportion of crystalline iron compounds and the low crystallinity along the slope confirmed the loss of iron during pedogenesis, which is reflected in the current soil color. The Si and Al contents were lowest in the "LAC" soil. There was a decrease of the Fe2O3/TiO2 ratio downhill, indicating progressive drainage restriction along the toposequence. The genesis and all physical and chemical properties of the soils at the footslope and the bottom of the palm swamp of the "chapadas" of the Alto Jequitinhonha region are strongly influenced by the occurrence of ground water on the surface or near the surface all year long, at present and/or in the past. Total concentrations of iron oxides, Fe d and Fe o in soils of the toposequence studied are related to the past and/or present soil colors and drainage conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Modeling of water movement in non-saturated soil usually requires a large number of parameters and variables, such as initial soil water content, saturated water content and saturated hydraulic conductivity, which can be assessed relatively easily. Dimensional flow of water in the soil is usually modeled by a nonlinear partial differential equation, known as the Richards equation. Since this equation cannot be solved analytically in certain cases, one way to approach its solution is by numerical algorithms. The success of numerical models in describing the dynamics of water in the soil is closely related to the accuracy with which the water-physical parameters are determined. That has been a big challenge in the use of numerical models because these parameters are generally difficult to determine since they present great spatial variability in the soil. Therefore, it is necessary to develop and use methods that properly incorporate the uncertainties inherent to water displacement in soils. In this paper, a model based on fuzzy logic is used as an alternative to describe water flow in the vadose zone. This fuzzy model was developed to simulate the displacement of water in a non-vegetated crop soil during the period called the emergency phase. The principle of this model consists of a Mamdani fuzzy rule-based system in which the rules are based on the moisture content of adjacent soil layers. The performances of the results modeled by the fuzzy system were evaluated by the evolution of moisture profiles over time as compared to those obtained in the field. The results obtained through use of the fuzzy model provided satisfactory reproduction of soil moisture profiles.