20 resultados para Variable response prediction
Resumo:
This work describes a lumped parameter mathematical model for the prediction of transients in an aerodynamic circuit of a transonic wind tunnel. Control actions to properly handle those perturbations are also assessed. The tunnel circuit technology is up to date and incorporates a novel feature: high-enthalpy air injection to extend the tunnels Reynolds number capability. The model solves the equations of continuity, energy and momentum and defines density, internal energy and mass flow as the basic parameters in the aerodynamic study as well as Mach number, stagnation pressure and stagnation temperature, all referred to test section conditions, as the main control variables. The tunnel circuit response to control actions and the stability of the flow are numerically investigated. Initially, for validation purposes, the code was applied to the AWT ("Altitude Wind Tunnel" of NASA-Lewis). In the sequel, the Brazilian transonic wind tunnel was investigated, with all the main control systems modeled, including injection.
Resumo:
Tropical high altitude grasslands present several species with both microphyllous and highly sclerophyllous leaves, and co-occur in specific soil patches, thus exposed to identical environments. In this article we describe herbivory among co-occurring microphyllous species in a tropical high altitude grassland ecosystem of Serra do Cipó, Minas Gerais state, and we tested the effect of variable anatomic traits on leaf herbivory patterns. Leaf anatomical traits were investigated for Baccharis imbricata Heering , Lavoisiera imbricata DC. and L. subulata Triana (focal species). Herbivory was measured from branches and leaves of individual plants and compared among co-occurring species within one multispecific shrub patch and among L. subulata individuals from this patch and an adjacent monospecific patch. For all present plant species and individuals we estimated the proportion of leaves with different levels of area lost. For the focal species, six leaves were sorted and taken for histological sectioning, in order to allow precise measures of defensive structures. Relative mean leaf area lost differed significantly among the six species found in the multispecific patch. Lavoisiera subulata individuals were more attacked in the multispecific than in the monospecific patch. Leaf margin protection traits in both B. imbricata and L. imbricata showed significant effect against herbivory. Data suggest that some anatomic traits have direct effect against herbivory but their effect are not clearly perceptible among branches within individual plants or among plants within the same species.
Resumo:
It has been shown that HLA class I molecules play a significant role in the regulation of the proliferation of T cells activated by mitogens and antigens. We evaluated the ability of mAb to a framework determinant of HLA class I molecules to regulate T cell proliferation and interferon gamma (IFN-g) production against leishmania, PPD, C. albicans and tetanus toxoid antigens in patients with tegumentary leishmaniasis and healthy subjects. The anti-major histocompatibility complex (MHC) mAb (W6/32) suppressed lymphocyte proliferation by 90% in cultures stimulated with aCD3, but the suppression was variable in cultures stimulated with leishmania antigen. This suppression ranged from 30-67% and was observed only in 5 of 11 patients. IFN-g production against leishmania antigen was also suppressed by anti-HLA class I mAb. In 3 patients IFN-g levels were suppressed by more than 60%, while in the other 2 cultures IFN-g levels were 36 and 10% lower than controls. The suppression by HLA class I mAb to the proliferative response in leishmaniasis patients and in healthy controls varied with the antigens and the patients or donors tested. To determine whether the suppression is directed at antigen presenting cells (APCs) or at the responding T cells, experiments with antigen-primed non-adherent cells, separately incubated with W6/32, were performed. Suppression of proliferation was only observed when the W6/32 mAb was added in the presence of T cells. These data provide evidence that a mAb directed at HLA class I framework determinants can suppress proliferation and cytokine secretion in response to several antigens.
Resumo:
The health-promoting effects of exercise training (ET) are related to nitric oxide (NO) production and/or its bioavailability. The objective of this study was to determine whether single nucleotide polymorphism of the endothelial NO synthase (eNOS) gene at positions -786T>C, G894T (Glu298Asp) and at the variable number of tandem repeat (VNTR) Intron 4b/a would interfere with the cardiometabolic responses of postmenopausal women submitted to physical training. Forty-nine postmenopausal women were trained in sessions of 30-40 min, 3 days a week for 8 weeks. Genotypes, oxidative stress status and cardiometabolic parameters were then evaluated in a double-blind design. Both systolic and diastolic blood pressure values were significantly reduced after ET, which was genotype-independent. However, women without eNOS gene polymorphism at position -786T>C (TT genotype) and Intron 4b/a (bb genotype) presented a better reduction of total cholesterol levels (-786T>C: before = 213 ± 12.1, after = 159.8 ± 14.4, Δ = -24.9% and Intron 4b/a: before = 211.8 ± 7.4, after = 180.12 ± 6.4 mg/dL, Δ = -15%), and LDL cholesterol (-786T>C: before = 146.1 ± 13.3, after = 82.8 ± 9.2, Δ = -43.3% and Intron 4b/a: before = 143.2 ± 8, after = 102.7 ± 5.8 mg/dL, Δ = -28.3%) in response to ET compared to those who carried the mutant allele. Superoxide dismutase activity was significantly increased in trained women whereas no changes were observed in malondialdehyde levels. Women without eNOS gene polymorphism at position -786T>C and Intron 4b/a showed a greater reduction of plasma cholesterol levels in response to ET. Furthermore, no genotype influence was observed on arterial blood pressure or oxidative stress status in this population.
Resumo:
Response Surface Methodology (RSM) was applied to evaluate the chromatic features and sensory acceptance of emulsions that combine Soy Protein (SP) and red Guava Juice (GJ). The parameters analyzed were: instrumental color based on the coordinates a* (redness), b* (yellowness), L* (lightness), C* (chromaticity), h* (hue angle), visual color, acceptance, and appearance. The analyses of the results showed that GJ was responsible for the high measured values of red color, hue angle, chromaticity, acceptance, and visual color, whereas SP was the variable that increased the yellowness intensity of the assays. The redness (R²adj = 74.86%, p < 0.01) and hue angle (R²adj = 80.96%, p < 0.01) were related to the independent variables by linear models, while the sensory data (color and acceptance) could not be modeled due to a high variability. The models of yellowness, lightness, and chromaticity did not present lack of fit but presented adjusted determination coefficients bellow 70%. Notwithstanding, the linear correlations between sensory and instrumental data were not significant (p > 0.05) and low Pearson coefficients were obtained. The results showed that RSM is a useful tool to develop soy-based emulsions and model some chromatic features of guava-based emulsions through RSM.