21 resultados para Two dimensional pattern optical transfer


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Heart failure is a severe complication associated with doxorubicin (DOX) use. Strain, assessed by two-dimensional speckle tracking (2D-STE), has been shown to be useful in identifying subclinical ventricular dysfunction. Objectives: a) To investigate the role of strain in the identification of subclinical ventricular dysfunction in patients who used DOX; b) to investigate determinants of strain response in these patients. Methods: Cross-sectional study with 81 participants: 40 patients who used DOX ±2 years before the study and 41 controls. All participants had left ventricular ejection fraction (LVEF) ≥55%. Total dose of DOX was 396mg (242mg/ms2). The systolic function of the LV was evaluated by LVEF (Simpson), as well as by longitudinal (εLL), circumferential (εCC), and radial (εRR) strains. Multivariate linear regression (MLR) analysis was performed using εLL (model 1) and εCC (model 2) as dependent variables. Results: Systolic and diastolic blood pressure values were higher in the control group (p < 0.05). εLL was lower in the DOX group (-12.4 ±2.6%) versus controls (-13.4 ± 1.7%; p = 0.044). The same occurred with εCC: -12.1 ± 2.7% (DOX) versus -16.7 ± 3.6% (controls; p < 0.001). The S’ wave was shorter in the DOX group (p = 0.035). On MLR, DOX was an independent predictor of reduced εCC (B = -4.429, p < 0.001). DOX (B = -1.289, p = 0.012) and age (B = -0.057, p = 0.029) were independent markers of reduced εLL. Conclusion: a) εLL, εCC and the S’ wave are reduced in patients who used DOX ±2 years prior to the study despite normal LVEF, suggesting the presence of subclinical ventricular dysfunction; b) DOX was an independent predictor of reduced εCC; c) prior use of DOX and age were independent markers of reduced εLL.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

New chemical systems have been recently designed for the study of complex phenomena such as oscillatory dynamics in the temporal domain and spatiotemporal pattern formation. Systems derived from oscillators based on the chemistry of bromate are the most extensively studied, with the celebrated Belousov-Zhabotinsky (BZ) reaction being the most popular example. Problems such as the formation of bubbles (CO2) and solid precipitate in the course of the reaction and the occurrence of simply short-lived oscillations under batch conditions are very common and, in some cases, compromise the use of some of these systems. It is investigated in this paper the dynamic behavior of the bromate/hypophosphite/acetone/dual catalyst system, which has been sugested as an interesting alternative to circumvent those inconvenients. In this work, manganese and ferroin are employed as catalysts and the complete system (BrO3-/H2PO2-/acetone/Mn(II)-ferroin) is studied under batch conditions. Temporal symmetry breaking was studied in a reactor under agitation by means of simultaneous records of the potential changes of platinum and Ag/AgBr electrodes, both measured versus a reversible hydrogen electrode. Additionally, spatio-temporal formation of target patterns and spiral waves were obtained when the oscillating mixture was placed in a quasi two-dimensional reactor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The increasing demand for water resources accentuates the need to reduce water waste through a more appropriate irrigation management. In the particular case of irrigated coffee planting, which in recent years presented growth with the predominance of drip irrigation, the improvement of drip irrigation management techniques is a necessity. The proper management of drip irrigation depends on the knowledge of the spatial pattern of soil moisture distribution inside the wetted strip formed under the irrigation lines. In this study, grids of 24 tensiometers were used to determine the water storage within the wetted strip formed under drippers, with a 3.78 L h-1 discharge, evenly spaced by 0.4 m, subjected to two different management criteria (fixed irrigation interval and 60 kPa tension). Estimates of storage based on a one-dimensional analysis, that only considers depth variations, were compared with two-dimensional estimates. The results indicate that for high-frequency irrigation the one-dimensional analysis is not appropriate. However, under less frequent irrigation, the two-dimensional analysis is dispensable, being the one-dimensional sufficient for calculating the water volume stored in the wetted strip.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A numerical procedure for solving the nongray radiative transfer equation (RTE) in two-dimensional cylindrical participating media is presented. Nongray effects are treated by using a narrow-band approach. Radiative emission from CO, CO2, H2O, CH4 and soot is considered. The solution procedure is applied to study radiative heat transfer in a premixed CH4-O2, laminar, flame. Temperature, soot and IR-active species molar fraction distributions are allowed to vary in the axial direction of the flame. From the obtained results it is possible to quantify the radiative loss in the flame, as well as the importance of soot radiation as compared to gaseous radiation. Since the solution procedure is developed for a two-dimensional cylindrical geometry, it can be applied to other combustion systems such as furnaces, internal combustion engines, liquid and solid propellant combustion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, we present the solution of a class of linear inverse heat conduction problems for the estimation of unknown heat source terms, with no prior information of the functional forms of timewise and spatial dependence of the source strength, using the conjugate gradient method with an adjoint problem. After describing the mathematical formulation of a general direct problem and the procedure for the solution of the inverse problem, we show applications to three transient heat transfer problems: a one-dimensional cylindrical problem; a two-dimensional cylindrical problem; and a one-dimensional problem with two plates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cell fate decisions are governed by a complex interplay between cell-autonomous signals and stimuli from the surrounding tissue. In vivo cells are connected to their neighbors and to the extracellular matrix forming a complex three-dimensional (3-D) microenvironment that is not reproduced in conventional in vitro systems. A large body of evidence indicates that mechanical tension applied to the cytoskeleton controls cell proliferation, differentiation and migration, suggesting that 3-D in vitro culture systems that mimic the in vivo situation would reveal biological subtleties. In hematopoietic tissues, the microenvironment plays a crucial role in stem and progenitor cell survival, differentiation, proliferation, and migration. In adults, hematopoiesis takes place inside the bone marrow cavity where hematopoietic cells are intimately associated with a specialized three 3-D scaffold of stromal cell surfaces and extracellular matrix that comprise specific niches. The relationship between hematopoietic cells and their niches is highly dynamic. Under steady-state conditions, hematopoietic cells migrate within the marrow cavity and circulate in the bloodstream. The mechanisms underlying hematopoietic stem/progenitor cell homing and mobilization have been studied in animal models, since conventional two-dimensional (2-D) bone marrow cell cultures do not reproduce the complex 3-D environment. In this review, we will highlight some of the mechanisms controlling hematopoietic cell migration and 3-D culture systems.