23 resultados para Transport of Pollutants
Resumo:
Two soybean (Glycine max) cultivars were used in this study, Ocepar 4, rated as moderately resistant to Meloidogyne incognita race 3 but susceptible to M. javanica, and 'BR 16', susceptible to both nematodes. The effect of nematodes infection on the uptake and transport of N, P and Ca to the shoot was studied in plants growing in a split root system. The upper half was inoculated with 0, 3,000, 9,000 or 27,000 eggs/plant while the lower half received 15N, 32P or 45Ca. Infected plants showed an increase of root but a decrease of shoot mass with increasing inoculum levels. In general, total endogenous nutrients increased in the roots and tended to decrease in the shoots with increasing inoculum levels. When concentrations were calculated, there was an increase in the three nutrients in the roots, and an increase of Ca but no significant variation of N and P was observed in the shoots. The total amount of 15N in the roots increased at the highest inoculum levels but 32P and 45Ca decreased. In the shoots there was a reduction of 32P and 45Ca. The specific concentrations of the labelled nutrients (abundance or radioactivity/tissue mass) also showed a decrease of 32P and 45Ca in the shoots and roots of infected plants and an increase of 15N in the shoots. Considering that overall nutrient concentrations reflect cumulative nutrient uptake and the data from labelled elements gave information at a specific moment of the infection, thus nematodes do interfere with nutrient uptake and translocation.
Resumo:
Although the functions of the element Boron (B) in plants have not been sufficiently clarified, several hypotheses have been raised. Some of the functions attributed to this element are synthesis and transport of carbohydrates. To evaluate the effect of B on the synthesis of some polyols and sugars in Eucalyptus grandis and hybrids "urograndis", these species were submitted to situations of supply and restriction of B. The experiment was carried out in a greenhouse, arranged in a randomized block design in a 2 x 2 factorial scheme, with 5 replicates of each genotype. The B levels were provided in the form of nutrient solution. No significant difference was observed in the content of mannitol, sorbitol, myo-inositol and scyllo-inositol and sugars α-glucose and β-glucose between E. grandis and hybrids. Arabinose was the only one to present a higher content in E. grandis on restriction of B. The effect of the presence of B was very expressive, but regarding B supply, the plants showed significant increase in the synthesis of the compounds evaluated.
Resumo:
Lignin, after cellulose, is the second most abundant biopolymer on Earth, accounting for 30% of the organic carbon in the biosphere. It is considered an important evolutionary adaptation of plants during their transition from the aquatic environment to land, since it bestowed the early tracheophytes with physical support to stand upright and enabled long-distance transport of water and solutes by waterproofing the vascular tissue. Although essential for plant growth and development, lignin is the major plant cell wall component responsible for biomass recalcitrance to industrial processing. The fact that lignin is a non-linear aromatic polymer built with chemically diverse and poorly reactive linkages and a variety of monomer units precludes the ability of any single enzyme to properly recognize and degrade it. Consequently, the use of lignocellulosic feedstock as a renewable and sustainable resource for the production of biofuels and bio-based materials will depend on the identification and characterization of the factors that determine plant biomass recalcitrance, especially the highly complex phenolic polymer lignin. Here, we summarize the current knowledge regarding lignin metabolism in plants, its effect on biomass recalcitrance and the emergent strategies to modify biomass recalcitrance through metabolic engineering of the lignin pathway. In addition, the potential use of sugarcane as a second-generation biofuel crop and the advances in lignin-related studies in sugarcane are discussed.
Resumo:
Mitochondrial ion transport, oxidative phosphorylation, redox balance, and physical integrity are key factors in tissue survival following potentially damaging conditions such as ischemia/reperfusion. Recent research has demonstrated that pharmacologically activated inner mitochondrial membrane ATP-sensitive K+ channels (mitoK ATP) are strongly cardioprotective under these conditions. Furthermore, mitoK ATP are physiologically activated during ischemic preconditioning, a procedure which protects against ischemic damage. In this review, we discuss mechanisms by which mitoK ATP may be activated during preconditioning and the mitochondrial and cellular consequences of this activation, focusing on end-effects which may promote ischemic protection. These effects include decreased loss of tissue ATP through reverse activity of ATP synthase due to increased mitochondrial matrix volumes and lower transport of adenine nucleotides into the matrix. MitoK ATP also decreases the release of mitochondrial reactive oxygen species by promoting mild uncoupling in concert with K+/H+ exchange. Finally, mitoK ATP activity may inhibit mitochondrial Ca2+ uptake during ischemia, which, together with decreased reactive oxygen release, can prevent mitochondrial permeability transition, loss of organelle function, and loss of physical integrity. We discuss how mitochondrial redox status, K+ transport, Ca2+ transport, and permeability transitions are interrelated during ischemia/reperfusion and are determinant factors regarding the extent of tissue damage.
Resumo:
The arterial partial pressure (P CO2) of carbon dioxide is virtually constant because of the close match between the metabolic production of this gas and its excretion via breathing. Blood gas homeostasis does not rely solely on changes in lung ventilation, but also to a considerable extent on circulatory adjustments that regulate the transport of CO2 from its sites of production to the lungs. The neural mechanisms that coordinate circulatory and ventilatory changes to achieve blood gas homeostasis are the subject of this review. Emphasis will be placed on the control of sympathetic outflow by central chemoreceptors. High levels of CO2 exert an excitatory effect on sympathetic outflow that is mediated by specialized chemoreceptors such as the neurons located in the retrotrapezoid region. In addition, high CO2 causes an aversive awareness in conscious animals, activating wake-promoting pathways such as the noradrenergic neurons. These neuronal groups, which may also be directly activated by brain acidification, have projections that contribute to the CO2-induced rise in breathing and sympathetic outflow. However, since the level of activity of the retrotrapezoid nucleus is regulated by converging inputs from wake-promoting systems, behavior-specific inputs from higher centers and by chemical drive, the main focus of the present manuscript is to review the contribution of central chemoreceptors to the control of autonomic and respiratory mechanisms.
Resumo:
There is a demonstrable association between exposure to air pollutants and deaths due to cardiovascular diseases. The objective of this study was to estimate the effects of exposure to sulfur dioxide on mortality due to circulatory diseases in individuals 50 years of age or older residing in São José dos Campos, SP. This was a time-series ecological study for the years 2003 to 2007 using information on deaths due to circulatory disease obtained from Datasus reports. Data on daily levels of pollutants, particulate matter, sulfur dioxide (SO2), ozone, temperature, and humidity were obtained from the São Paulo State Environmental Agency. Moving average models for 2 to 7 days were calculated by Poisson regression using the R software. Exposure to SO2 was analyzed using a unipollutant, bipollutant or multipollutant model adjusted for mean temperature and humidity. The relative risks with 95%CI were obtained and the percent decrease in risk was calculated. There were 1928 deaths with a daily mean (± SD) of 1.05 ± 1.03 (range: 0-6). Exposure to SO2 was significantly associated with mortality due to circulatory disease: RR = 1.04 (95%CI = 1.01 to 1.06) in the 7-day moving average, after adjusting for ozone. There was an 8.5% decrease in risk in the multipollutant model, proportional to a decrease of SO2 concentrations. The results of this study suggest that residents of medium-sized Brazilian cities with characteristics similar to those of São José dos Campos probably have health problems due to exposure to air pollutants.
Resumo:
The maintenance of extracellular Na+ and Cl- concentrations in mammals depends, at least in part, on renal function. It has been shown that neural and endocrine mechanisms regulate extracellular fluid volume and transport of electrolytes along nephrons. Studies of sex hormones and renal nerves suggested that sex hormones modulate renal function, although this relationship is not well understood in the kidney. To better understand the role of these hormones on the effects that renal nerves have on Na+ and Cl- reabsorption, we studied the effects of renal denervation and oophorectomy in female rats. Oophorectomized (OVX) rats received 17β-estradiol benzoate (OVE, 2.0 mg·kg-1·day-1, sc) and progesterone (OVP, 1.7 mg·kg-1·day-1,sc). We assessed Na+ and Cl-fractional excretion (FENa+ and FECl-, respectively) and renal and plasma catecholamine release concentrations. FENa+, FECl-, water intake, urinary flow, and renal and plasma catecholamine release levels increased in OVX vs control rats. These effects were reversed by 17β-estradiol benzoate but not by progesterone. Renal denervation did not alter FENa+, FECl-, water intake, or urinary flow values vs controls. However, the renal catecholamine release level was decreased in the OVP (236.6±36.1 ng/g) and denervated rat groups (D: 102.1±15.7; ODE: 108.7±23.2; ODP: 101.1±22.1 ng/g). Furthermore, combining OVX + D (OD: 111.9±25.4) decreased renal catecholamine release levels compared to either treatment alone. OVE normalized and OVP reduced renal catecholamine release levels, and the effects on plasma catecholamine release levels were reversed by ODE and ODP replacement in OD. These data suggest that progesterone may influence catecholamine release levels by renal innervation and that there are complex interactions among renal nerves, estrogen, and progesterone in the modulation of renal function.
Resumo:
Exposure to nitrogen oxides (NOx) emitted by burning fossil fuels has been associated with respiratory diseases. We aimed to estimate the effects of NOx exposure on mortality owing to respiratory diseases in residents of Taubaté, São Paulo, Brazil, of all ages and both sexes. This time-series ecological study from August 1, 2011 to July 31, 2012 used information on deaths caused by respiratory diseases obtained from the Health Department of Taubaté. Estimated daily levels of pollutants (NOx, particulate matter, ozone, carbon monoxide) were obtained from the Centro de Previsão de Tempo e Estudos Climáticos Coupled Aerosol and Tracer Transport model to the Brazilian developments on the Regional Atmospheric Modeling System. These environmental variables were used to adjust the multipollutant model for apparent temperature. To estimate association between hospitalizations owing to asthma and air pollutants, generalized additive Poisson regression models were developed, with lags as much as 5 days. There were 385 deaths with a daily mean (±SD) of 1.05±1.03 (range: 0-5). Exposure to NOx was significantly associated with mortality owing to respiratory diseases: relative risk (RR)=1.035 (95% confidence interval [CI]: 1.008-1.063) for lag 2, RR=1.064 (95%CI: 1.017-1.112) lag 3, RR=1.055 (95%CI: 1.025-1.085) lag 4, and RR=1.042 (95%CI: 1.010-1.076) lag 5. A 3 µg/m3 reduction in NOx concentration resulted in a decrease of 10-18 percentage points in risk of death caused by respiratory diseases. Even at NOx concentrations below the acceptable standard, there is association with deaths caused by respiratory diseases.