45 resultados para Tetroxide-catalyzed Oxidation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Initially, all major factors that affect the rate of the AldH-catalyzed reaction (enzyme concentration, substrate concentration, temperature and pH) were investigated. Optimal activity was observed between pH values of 7.5 and 9.5 in the temperature range of 25 to 50 ºC. Kinetic parameters, such as Km (2.92 µmol L-1) and Vmax (1.33 10-2 µmol min-1) demonstrate a strong enzyme-substrate affinity. The sensors were based on screen-printed electrodes modified with the Meldola Blue-Reinecke salt (MBRS) combination. Operational conditions (NAD+ and substrate contents, enzyme loading and response time) were optimized. Also, two enzyme immobilization procedures were tested: entrapment in poly(vinyl alcohol) bearing styrylpyridinium groups (PVA-SbQ) and crosslinking with glutaraldehyde. Chronoamperometry was employed to observe the biosensor responses during enzymatic hydrolysis of propionaldehyde and also to construct inhibition curves with maneb and zineb fungicides. Best results were found with the following conditions: [NAD+] = 0.25 mmol L-1; [propionaldehyde] = 80 µmol L-1; enzyme loading = 0.8 U per electrode; response time = 10 min, and inhibition time = 10 min. Current intensities around 103 ± 13 nA with the sensors and good stability was obtained for both immobilization procedures. Detection limits, calculated using 10% inhibition were 31.5 µg L-1 and 35 µg L-1 for maneb and zineb, respectively. Results obtained with other MBRS-modified electrodes consisting of mono and bi-enzymic sensors were compared. The ability to catalyze NADH oxidation by MB was also highlighted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The [Ru3O(Ac)6(py)2(CH3OH)]+ cluster provides an effective electrocatalytic species for the oxidation of methanol under mild conditions. This complex exhibits characteristic electrochemical waves at -1.02, 0.15 and 1.18 V, associated with the Ru3III,II,II/Ru3III,III,II/Ru 3III,III,III /Ru3IV,III,III successive redox couples, respectively. Above 1.7 V, formation of two RuIV centers enhances the 2-electron oxidation of the methanol ligand yielding formaldehyde, in agreement with the theoretical evolution of the HOMO levels as a function of the oxidation states. This work illustrates an important strategy to improve the efficiency of the oxidation catalysis, by using a multicentered redox catalyst and accessing its multiple higher oxidation states.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present in this work an experimental investigation of the effect of temperature (from 25 to 180 ºC) in the electro-oxidation of ethanol on platinum in two different phosphoric acid concentrations. We observed that the onset potential for ethanol electro-oxidation shifts to lower values and the reaction rates increase as temperature is increased for both electrolytes. The results were rationalized in terms of the effect of temperature on the adsorption of reaction intermediates, poisons, and anions. The formation of oxygenated species at high potentials, mainly in the more diluted electrolyte, also contributes to increase the electro-oxidation reaction rate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Methylglyoxal is a very reactive α-oxoaldehyde putatively produced by glycolysis, cytochrome P450-catalyzed acetone oxidation and aminoacetone oxidation. Methylglyoxal has been pointed as a substrate for the glyoxalase system ultimately energy-yielding pyruvate, but methylglyoxal is also a toxicant involved in protein aggregation and DNA modification. Controversial hypothesis on methylglyoxal as an anticancer agent, an energy-yielding glycolysis intermediates, and as a regulator of cell division have also been proposed. Methylglyoxal research focuses now on unveiling its biological properties and on the discovery of drugs capable to inhibit its toxic effects, principally in diabetes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CeO2 and mixed CeO2-ZrO2 nanopowders were synthesized and efficiently deposited onto cordierite substrates, with the evaluation of their morphologic and structural properties through XRD, SEM, and FTIR. The modified substrates were employed as outer heterogeneous catalysts for reducing the soot originated from the diesel and diesel/biodiesel blends incomplete combustion. Their activity was evaluated in a diesel stationary motor, and a comparative analysis of the soot emission was carried out through diffuse reflectance spectroscopy. The analyses have shown that the catalyst-impregnated cordierite samples are very efficient for soot oxidation, being capable of reducing the soot emission in more than 60%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we report the synthesis of sulfonamide derivatives using a conventional procedure and with solid supports, such as silica gel, florisil, alumina, 4Å molecular sieves, montmorillonite KSF, and montmorillonite K10 using solvent-free and microwave-assisted methods. Our results show that solid supports have a catalytic activity in the formation of sulfonamide derivatives. We found that florisil, montmorillonite KSF, and K10 could be used as inexpensive alternative catalysts that are easily separated from the reaction media. Additionally, solvent-free and microwave-assisted methods were more efficient in reducing reaction time and in increasing yield.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Synthetic antioxidants are an alternative to prevent or retard the degradation of biofuels made from vegetable oils. In this study, it was evaluated the oxidative stability of B100 soybean oil biodiesel, in the presence of tercbutylhydroquinone (TBHQ). The results showed that the induction period, that precedes the seeding process, was delayed in the presence of the antioxidant. Moreover, the obtained results suggest that the B100 biodiesel containing TBHQ can present a storage time at 25 ºC, three times longer than the estimated time for the pure B100.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A study on the monitoring of glycerol oxidation catalyzed by gold nanoparticles supported on activated carbon under mild conditions by chemometric methods is presented. The reaction was monitored by mass spectrometry-electrospray ionization (ESI-MS) and comparatively by mid infrared spectroscopy (MIR). Concentration profiles of reagent and products were determined by chemometric tools such as Principal Component Analysis (PCA), Evolving Factor Analysis (EFA) and Multivariate Curve Resolution (MCR). The gold nanoparticle catalyst was relatively active in glycerol oxidation, favoring formation of high added value products. It was found that the reaction stabilization was reached at four hours, with approximately 70% glycerol conversion and high selectivity for glycerate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydrogen peroxide has been used for decades in developed countries as an oxidizing agent in the treatment of water, domestic sewage and industrial effluents. This study evaluated the influence of the concentration of H2O2 and pH on the inactivation of Escherichia coli cells and the disinfection of sewage treated. The results showed that the inactivation rate increased with pH and H2O2. The presence of other contaminants dissolved in the effluent is probably the cause of these differences, because E. coli inactivation in synthetic wastewater was found to be much faster than in the real treated domestic sewage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A complex cation, diNOsarcobalt(III), [Co(diNOsar)]3+, (diNOsar = 1,8-dinitro-3,6,10,13,16,19-hexaazabicyclo-[6.6.6]eicosane), was synthesized and immobilized in the cavities of a Y zeolite by the reaction of precursor species in the pores of the zeolite. The encapsulated material was compared to the compound diNOsarcobalt(III) chloride, [Co(diNOsar)]Cl3. Both diNOsarcobalt(III) chloride and the zeolite-encapsulated complex, [Co(diNOsar)]3+/zeolite, were obtained in high yield and characterized by ultraviolet-visible and infrared spectroscopy. X-ray diffraction demonstrated the incorporation of the complex cation into the pores of the zeolite. The catalytic production of hydrogen peroxide from oxygenated water confirmed the successful synthesis of the complex diNOsarcobalt(III) immobilized in the zeolite.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Direct Black 22 dye was electrooxidized at 30 mA cm-2 in a flow cell using a BDD or β-PbO2 anode, varying pH (3, 7, 11), temperature (10, 25, 45 °C), and [NaCl] (0 or 1.5 g L-1). In the presence of NaCl, decolorization rates were similar for all conditions investigated, but much higher than predicted through a theoretical model assuming mass-transport control; similar behavior was observed for COD removal (at pH 7, 25 °C), independently of the anode. With no NaCl, COD removals were also higher than predicted with a theoretical model, which suggests the existence of distinct dye degradation pathways.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The bioactive 3,4-dihydropyrimidin-2(1H)-thione derivative known as Monastrol was synthesized under catalyzed and non-catalyzed conditions through the Biginelli multicomponent reaction under solvent-free conditions. The use of two Lewis acids (FeCl3 and CuCl2) and two Brønsted acids (HCl and CF3COOH) as catalysts improved the reaction yields of the transformation compared with the non-catalyzed reaction. The experiments investigated catalysis and its role, the importance of multicomponent reactions and their green features, and the application of these concepts to the synthesis of a biologically important structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Zirconia was prepared by a precipitation method and calcined at 723 K, 1023 K, and 1253 K in order to obtain monoclinic zirconia. The prepared zirconia was characterized by XRD, SEM, EDX, surface area and pore size analyzer, and particle size analyzer. Monoclinic ZrO2 as a catalyst was used for the gas-phase oxidation of isopropanol to acetone in a Pyrex-glass-flow-type reactor with a temperature range of 443 K - 473 K. It was found that monoclinic ZrO2 shows remarkable catalytic activity (68%) and selectivity (100%) for the oxidation of isopropanol to acetone. This kinetic study reveals that the oxidation of isopropanol to acetone follows the L-H mechanism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An enzymatic spectrophotometric method for the determination of methyldopa in a dissolution test of tablets was developed using peroxidase from radish (Raphanus sativus). The enzyme was extracted from radish roots using a phosphate buffer of pH 6.5 and partially purified through centrifugation. The supernatant was used as a source of peroxidase. The methyldopachrome resulting from the oxidation of methyldopa catalyzed by peroxidase was monitored at 480 nm. The enzymatic activity was stable for a period of at least 25 days when the extract was stored at 4 or -20 ºC. The method was validated according to RDC 899 and ICH guidelines. The calibration graph was linear in the range 200-800 µg mL-1, with a correlation coefficient of 0.9992. The limits of detection and quantification in the dissolution medium were 36 and 120 µg mL-1, respectively. Recovery was greater than 98.9%. This method can be applied for the determination of methyldopa in dissolution tests of tablets without interference from the excipients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electrochemical oxidation on platinum and platinum rhodium bimetallic electrodes was studied by Differential Electrochemical Mass Spectrometry for several ethanol concentrations in solution. It is found that increasing the ethanol concentration the production of the partially oxidized products (acetaldehyde) increases as the concentration increases. On the other hand, addition of 25% at. of rhodium increases the full oxidation to CO2. Another interesting result observed is a correlation between the intensity of the dehydrogenations peak at 0.3 V vs. RHE and the CO2 yield for the different ethanol concentration studied.