19 resultados para Task Conflict
Resumo:
To inhibit an ongoing flow of thoughts or actions has been largely considered to be a crucial executive function, and the stop-signal paradigm makes inhibitory control measurable. Stop-signal tasks usually combine two concurrent tasks, i.e., manual responses to a primary task (go-task) are occasionally countermanded by a stimulus which signals participants to inhibit their response in that trial (stop-task). Participants are always instructed not to wait for the stop-signal, since waiting strategies cause the response times to be unstable, invalidating the data. The aim of the present study was to experimentally control the strategies of waiting deliberately for the stop-signal in a stop-task by means of an algorithm that measured the variation in the reaction times to go-stimuli on-line, and displayed a warning legend urging participants to be faster when their reaction times were more than two standard deviations of the mean. Thirty-four university students performed a stop-task with go- and stop-stimuli, both of which were delivered in the visual modality and were lateralized within the visual field. The participants were divided into two groups (group A, without the algorithm, vs group B, with the algorithm). Group B exhibited lower variability of reaction times to go-stimuli, whereas no significant between-group differences were found in any of the measures of inhibitory control, showing that the algorithm succeeded in controlling the deliberate waiting strategies. Differences between deliberate and unintentional waiting strategies, and anxiety as a probable factor responsible for individual differences in deliberate waiting behavior, are discussed.
Resumo:
The paper-and-pencil digit-comparison task for assessing negative priming (NP) was introduced, using a referent-size-selection procedure that was demonstrated to enhance the effect. NP is indicated by slower responses to recently ignored items, and proposed within the clinical-experimental framework as a major cognitive index of active suppression of distracting information, critical to executive functioning. The digit-comparison task requires circling digits of a list with digit-asterisk pairs (a baseline measure for digit-selection), and the larger of two digits in each pair of the unrelated (with different digits in successive digit-pairs) and related lists (in which the smaller digit subsequently became a target). A total of 56 students (18-38 years) participated in two experiments that explored practice effects across lists and demonstrated reliable NP, i.e., slowing to complete the related list relative to the unrelated list, (F(2, 44) = 52.42, P < 0.0001). A 3rd experiment examined age-related effects. In the paper-and-pencil digit-comparison task, NP was reliable for the younger (N = 8, 18-24 years) and middle-aged adults (N = 8, 31-54 years), but absent for the older group (N = 8, 68-77 years). NP was also reduced with aging in a computer-implemented digit-comparison task, and preserved in a task typically used to test location-specific NP, accounting for the dissociation between identity- and spatial-based suppression of distractors (Rao R(3, 12) = 16.02, P < 0.0002). Since the paper-and-pencil digit-comparison task can be administered easily, it can be useful for neuropsychologists seeking practical measures of NP that do not require cumbersome technical equipment.
Resumo:
During adolescence, the sleep phase delay associated with early school times increases daytime sleepiness and reduces psychomotor performance. Some studies have shown an effect of gender on psychomotor performance in adults and children. Males present faster reaction times (RT) compared with females. The aim of the present study was to evaluate the influence of gender on Palm psychomotor vigilance task (PVT) performance in adolescents. Thirty-four adolescents (19 girls, 13 to 16 years old) attending morning school classes of a public school in Curitiba, PR, Brazil, participated in the study. Sleep patterns were measured using actigraphy and sleepiness data were accessed with the Karolinska Sleepiness Scale (KSS). KSS and PVT measurements were collected at two times in the morning (8:00 and 11:00 h). The data were compared using one-way ANOVA, considering gender as a factor. ANOVA indicated that gender did not affect sleep patterns and subjective somnolence; however, a statistically significant effect of gender was detected for PVT performance. Boys presented faster RT (RT-PVT1: 345.51 ms, F = 6.08, P < 0.05; RT-PVT2: 343.30 ms, F = 6.35, P < 0.05) and fewer lapses (lapses-PVT1: 8.71, F = 4.45, P < 0.05; lapses-PVT2: 7.82, F = 7.06, P < 0.05) compared with girls (RT-PVT1: 402.96; RT-PVT2: 415.70; lapses-PVT1: 16.33; lapses-PVT2: 17.80). These results showed that this effect of gender, already reported in adults and children, is also observed in adolescents. The influence of gender should be taken into account in studies that use Palm PVT to evaluate psychomotor performance in this age range.
Resumo:
The occurrence of a weak auditory warning stimulus increases the speed of the response to a subsequent visual target stimulus that must be identified. This facilitatory effect has been attributed to the temporal expectancy automatically induced by the warning stimulus. It has not been determined whether this results from a modulation of the stimulus identification process, the response selection process or both. The present study examined these possibilities. A group of 12 young adults performed a reaction time location identification task and another group of 12 young adults performed a reaction time shape identification task. A visual target stimulus was presented 1850 to 2350 ms plus a fixed interval (50, 100, 200, 400, 800, or 1600 ms, depending on the block) after the appearance of a fixation point, on its left or right side, above or below a virtual horizontal line passing through it. In half of the trials, a weak auditory warning stimulus (S1) appeared 50, 100, 200, 400, 800, or 1600 ms (according to the block) before the target stimulus (S2). Twelve trials were run for each condition. The S1 produced a facilitatory effect for the 200, 400, 800, and 1600 ms stimulus onset asynchronies (SOA) in the case of the side stimulus-response (S-R) corresponding condition, and for the 100 and 400 ms SOA in the case of the side S-R non-corresponding condition. Since these two conditions differ mainly by their response selection requirements, it is reasonable to conclude that automatic temporal expectancy influences the response selection process.