43 resultados para TOLL-LIKE RECEPTOR-5


Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVES: The aim of this study was to describe the pattern of expression of Toll-like receptor 2 (TLR2) and Toll-like receptor 4 (TLR4) in skin biopsies of patients with American tegumentary leishmaniasis (ATL) caused by Leishmania braziliensis. METHODS: This prospective study evaluated 12 patients with ATL caused by Leishmania braziliensis confirmed by polymerase chain reaction. Immunohistochemistry was performed to determine the expression of TLR2 and TLR4. The number of NK cells, dendritic cells and macrophages in the tissue were calculated. The cytokine expression was determined using the anti-TNF-α, anti-IFN-Γ, anti-IL-1 and anti-IL-6. Double immunostaining reactions were used to determine the cell expressing TLR2 and TLR4. RESULTS: The numbers of cells expressing TLR2 and TLR4 were 145.48 ± 82.46 cell/mm² and 3.26 ± 4.11 cell/mm² respectively (p < 0.05). There was no correlation of TLR2 and TLR4 with the amount of cytokines and the number of NK cells, dendritic cells or macrophages. The double immunostaining revealed that TLR2 was expressed by macrophages. CONCLUSION: In human cutaneous leishmaniasis caused by Leishmania braziliensis, TLR2 is the most common TLR expressed during active disease, mainly by macrophages although without correlation with the amount of cytokines and number of cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A variety of host immunogenetic factors appear to influence both an individual's susceptibility to infection with Mycobacterium leprae and the pathologic course of the disease. Animal models can contribute to a better understanding of the role of immunogenetics in leprosy through comparative studies helping to confirm the significance of various identified traits and in deciphering the underlying mechanisms that may be involved in expression of different disease related phenotypes. Genetically engineered mice, with specific immune or biochemical pathway defects, are particularly useful for investigating granuloma formation and resistance to infection and are shedding new light on borderline areas of the leprosy spectrum which are clinically unstable and have a tendency toward immunological complications. Though armadillos are less developed in this regard, these animals are the only other natural hosts of M. leprae and they present a unique opportunity for comparative study of genetic markers and mechanisms associable with disease susceptibility or resistance, especially the neurological aspects of leprosy. In this paper, we review the recent contributions of genetically engineered mice and armadillos toward our understanding of the immunogenetics of leprosy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite major improvements in its treatment and diagnosis, sepsis is still a leading cause of death and admittance to the intensive care unit (ICU). Failure to identify patients at high risk of developing septic shock contributes to an increase in the sepsis burden and rapid molecular tests are currently the most promising avenue to aid in patient risk determination and therapeutic anticipation. The primary goal of this study was to evaluate the genetic susceptibility that affects sepsis outcome in 72 sepsis patients admitted to the ICU. Seven polymorphisms were genotyped in key inflammatory response genes in sepsis, including tumour necrosis factor-α,interlelukin (IL)-1β, IL-10,IL-8, Toll-like receptor 4, CXCR1and CXCR2. The primary finding showed that patients who were homozygous for the major A allele in IL-10rs1800896 had almost five times higher chance to develop septic shock compared to heterozygotes. Similarly, selected clinical features and CXCR2rs1126579 single nucleotide polymorphisms modulated septic shock susceptibility without affecting survival. These data support the hypothesis that molecular testing has clinical usefulness to improve sepsis prognostic models. Therefore, enrichment of the ICU portfolio by including these biomarkers will aid in the early identification of sepsis patients who may develop septic shock.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tolerance to lipopolysaccharide (LPS) occurs when animals or cells exposed to LPS become hyporesponsive to a subsequent challenge with LPS. This mechanism is believed to be involved in the down-regulation of cellular responses observed in septic patients. The aim of this investigation was to evaluate LPS-induced monocyte tolerance of healthy volunteers using whole blood. The detection of intracellular IL-6, bacterial phagocytosis and reactive oxygen species (ROS) was determined by flow cytometry, using anti-IL-6-PE, heat-killed Staphylococcus aureus stained with propidium iodide and 2',7'-dichlorofluorescein diacetate, respectively. Monocytes were gated in whole blood by combining FSC and SSC parameters and CD14-positive staining. The exposure to increasing LPS concentrations resulted in lower intracellular concentration of IL-6 in monocytes after challenge. A similar effect was observed with challenge with MALP-2 (a Toll-like receptor (TLR)2/6 agonist) and killed Pseudomonas aeruginosa and S. aureus, but not with flagellin (a TLR5 agonist). LPS conditioning with 15 ng/mL resulted in a 40% reduction of IL-6 in monocytes. In contrast, phagocytosis of P. aeruginosa and S. aureus and induced ROS generation were preserved or increased in tolerant cells. The phenomenon of tolerance involves a complex regulation in which the production of IL-6 was diminished, whereas the bacterial phagocytosis and production of ROS was preserved. Decreased production of proinflammatory cytokines and preserved or increased production of ROS may be an adaptation to control the deleterious effects of inflammation while preserving antimicrobial activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The spleen plays a crucial role in the development of immunity to malaria, but the role of pattern recognition receptors (PRRs) in splenic effector cells during malaria infection is poorly understood. In the present study, we analysed the expression of selected PRRs in splenic effector cells from BALB/c mice infected with the lethal and non-lethal Plasmodium yoelii strains 17XL and 17X, respectively, and the non-lethal Plasmodium chabaudi chabaudi AS strain. The results of these experiments showed fewer significant changes in the expression of PRRs in AS-infected mice than in 17X and 17XL-infected mice. Mannose receptor C type 2 (MRC2) expression increased with parasitemia, whereas Toll-like receptors and sialoadhesin (Sn) decreased in mice infected with P. chabaudi AS. In contrast, MRC type 1 (MRC1), MRC2 and EGF-like module containing mucin-like hormone receptor-like sequence 1 (F4/80) expression decreased with parasitemia in mice infected with 17X, whereas MRC1 an MRC2 increased and F4/80 decreased in mice infected with 17XL. Furthermore, macrophage receptor with collagenous structure and CD68 declined rapidly after initial parasitemia. SIGNR1 and Sn expression demonstrated minor variations in the spleens of mice infected with either strain. Notably, macrophage scavenger receptor (Msr1) and dendritic cell-associated C-type lectin 2 expression increased at both the transcript and protein levels in 17XL-infected mice with 50% parasitemia. Furthermore, the increased lethality of 17X infection in Msr1 -/- mice demonstrated a protective role for Msr1. Our results suggest a dual role for these receptors in parasite clearance and protection in 17X infection and lethality in 17XL infection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Type-1 (T1R) and Type-2 (T2R) leprosy reactions (LR), which affect up to 50% of leprosy patients, are aggressive inflammatory episodes of sudden onset and highly variable incidence across populations. LR are often diagnosed concurrently with leprosy, but more frequently occur several months after treatment onset. It is not uncommon for leprosy patients to develop recurring reactional episodes; however, they rarely undergo both types of LR. Today, LR are the main cause of permanent disabilities associated with leprosy and represent a major challenge in the clinical management of leprosy patients. Although progress has been made in understanding the immunopathology of LR, the factors that cause a leprosy patient to suffer from LR are largely unknown. Given the impact that ethnic background has on the risk of developing LR, host genetic factors have long been suspected of contributing to LR. Indeed, polymorphisms in seven genes [Toll-like receptors (TLR)1, TLR2, nucleotide-binding oligomerisation domain containing 2, vitamin D receptor, natural resistance-associated macrophage protein 1, C4B and interleukin-6] have been found to be associated with one or more LR outcomes. The identification of host genetic markers with predictive value for LR would have a major impact on nerve damage control in leprosy. In this review, we present the recent advances achieved through genetic studies of LR.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nephrolithiasis is one of the most common diseases in the Western world. The disease manifests itself with intensive pain, sporadic infections, and, sometimes, renal failure. The symptoms are due to the appearance of urinary stones (calculi) which are formed mainly by calcium salts. These calcium salts precipitate in the renal papillae and/or within the collecting ducts. Inherited forms of nephrolithiasis related to chromosome X (X-linked hypercalciuric nephrolithiasis or XLN) have been recently described. Hypercalciuria, nephrocalcinosis, and male predominance are the major characteristics of these diseases. The gene responsible for the XLN forms of kidney stones was cloned and characterized as a chloride channel called ClC-5. The ClC-5 chloride channel belongs to a superfamily of voltage-gated chloride channels, whose physiological roles are not completely understood. The objective of the present review is to identify recent advances in the molecular pathology of nephrolithiasis, with emphasis on XLN. We also try to establish a link between a chloride channel like ClC-5, hypercalciuria, failure in urine acidification and protein endocytosis, which could explain the symptoms exhibited by XLN patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We studied the effects of ethanol on the levels of norepinephrine, dopamine, serotonin (5-HT) and their metabolites as well as on D1- and D2-like receptors in the rat striatum. Ethanol (2 or 4 g/kg, po) was administered daily by gavage to male Wistar rats and on the 7th day, 30 min or 48 h after drug administration, the striatum was dissected for biochemical assays. Monoamine and metabolite concentrations were measured by HPLC and D1- and D2-like receptor densities were determined by binding assays. Scatchard analyses showed decreases of 30 and 43%, respectively, in D1- and D2-like receptor densities and no change in dissociation constants (Kd) 48 h after the withdrawal of the dose of 4 g/kg. Ethanol, 2 g/kg, was effective only on the density of D2-like receptors but not on Kd of either receptor. Thirty minutes after the last ethanol injection (4 g/kg), decreases of D2 receptor density (45%) as well as of Kd values (34%) were detected. However, there was no significant effect on D1-like receptor density and a 46% decrease was observed in Kd. An increase in dopamine and 3,4-dihydroxyphenylacetic acid (DOPAC), a decrease in norepinephrine, and no alteration in 5-HT levels were demonstrated after 48-h withdrawal of 4 g/kg ethanol. Similar effects were observed in dopamine and DOPAC levels 30 min after drug administration. No alteration in norepinephrine concentration and a decrease in 5-HT levels were seen 30 min after ethanol (4 g/kg) administration. Our findings indicate the involvement of the monoaminergic system in the responses to ethanol.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An increasing number of pathophysiological roles for purinoceptors are emerging, some of which have therapeutic potential. Erythrocytes are an important source of purines, which can be released under physiological and physiopathological conditions, acting on purinergic receptors associated with the same cell or with neighboring cells. Few studies have been conducted on lizards, and have been limited to ATP agonist itself. We have previously shown that the red blood cells (RBCs) of the lizard Ameiva ameiva store Ca2+ in the endoplasmic reticulum (ER) and that the purinergic agonist ATP triggers a rapid and transient increase of [Ca2+]c by mobilization of the cation from internal stores. We also reported the ability of the second messenger IP3 to discharge the ER calcium pool of the ER. Here we characterize the purinoceptor present in the cytoplasmic membrane of the RBCs of the lizard Ameiva ameiva by the selective use of ATP analogues and pyrimidine nucleotides. The nucleotides UTP, UDP, GTP, and ATPgammaS triggered a dose-dependent response, while interestingly 2MeSATP, 2ClATP, alpha, ß-ATP, and ADP failed to do so in a 1- to 200-µm con- centration. The EC50 obtained for the compounds tested was 41.77 µM for UTP, 48.11 µM for GTP, 53.11 µM for UDP, and 30.78 µM for ATPgammaS. The present data indicate that the receptor within the RBCs of Ameiva ameiva is a P2Y4-like receptor due to its pharmacological similarity to the mammalian P2Y4 receptor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of the present study was to determine the mechanisms underlying the relaxant effect of adrenomedullin (AM) in rat cavernosal smooth muscle (CSM) and the expression of AM system components in this tissue. Functional assays using standard muscle bath procedures were performed in CSM isolated from male Wistar rats. Protein and mRNA levels of pre-pro-AM, calcitonin receptor-like receptor (CRLR), and Subtypes 1, 2 and 3 of the receptor activity-modifying protein (RAMP) family were assessed by Western immunoblotting and quantitative real-time polymerase chain reaction, respectively. Nitrate and 6-keto-prostaglandin F1α (6-keto-PGF1α; a stable product of prostacyclin) levels were determined using commercially available kits. Protein and mRNA of AM, CRLR, and RAMP 1, -2, and -3 were detected in rat CSM. Immunohistochemical assays demonstrated that AM and CRLR were expressed in rat CSM. AM relaxed CSM strips in a concentration-dependent manner. AM22-52, a selective antagonist for AM receptors, reduced the relaxation induced by AM. Conversely, CGRP8-37, a selective antagonist for calcitonin gene-related peptide receptors, did not affect AM-induced relaxation. Preincubation of CSM strips with NG-nitro-L-arginine-methyl-ester (L-NAME, nitric oxide synthase inhibitor), 1H-(1,2,4)oxadiazolo[4,3-a]quinoxalin-1-one (ODQ, quanylyl cyclase inhibitor), Rp-8-Br-PET-cGMPS (cGMP-dependent protein kinase inhibitor), SC560 [5-(4-chlorophenyl)-1-(4-methoxyphenyl)-3-trifluoromethyl pyrazole, selective cyclooxygenase-1 inhibitor], and 4-aminopyridine (voltage-dependent K+ channel blocker) reduced AM-induced relaxation. On the other hand, 7-nitroindazole (selective neuronal nitric oxide synthase inhibitor), wortmannin (phosphatidylinositol 3-kinase inhibitor), H89 (protein kinase A inhibitor), SQ22536 [9-(tetrahydro-2-furanyl)-9H-purin-6-amine, adenylate cyclase inhibitor], glibenclamide (selective blocker of ATP-sensitive K+ channels), and apamin (Ca2+-activated channel blocker) did not affect AM-induced relaxation. AM increased nitrate levels and 6-keto-PGF1α in rat CSM. The major new contribution of this research is that it demonstrated expression of AM and its receptor in rat CSM. Moreover, we provided evidence that AM-induced relaxation in this tissue is mediated by AM receptors by a mechanism that involves the nitric oxide-cGMP pathway, a vasodilator prostanoid, and the opening of voltage-dependent K+ channels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Eosinophils preferentially accumulate at sites of chronic allergic diseases such as bronchial asthma. The mechanisms by which selective eosinophil migration occurs are not fully understood. However, interactions of cell-surface adhesion molecules on the eosinophil with molecular counterligands on endothelial and epithelial cells, and on extracellular matrix proteins, are likely to be critical during the recruitment process. One possible mechanism for selective eosinophil recruitment involves the alpha4beta 1 (VLA-4) integrin which is not expressed on neutrophils. Correlations have been found between infiltration of eosinophils and endothelial expression of VCAM-1, the ligand for VLA-4, in the lungs of asthmatic individuals as well as in late phase reactions in the lungs, nose and skin. Epithelial and endothelial cells respond to the Th2-type cytokines IL-4 and IL-13 with selective de novo expression of VCAM-1, consistent with the possible role of VCAM-1/VLA-4 interactions in eosinophil influx during allergic inflammation. Both beta 1 and beta 2 integrins on eosinophils exist in a state of partial activation. For example, eosinophils can be maximally activated for adhesion to VCAM-1 or fibronectin after exposure to beta 1 integrin-activating antibodies or divalent cations, conditions that do not necessarily affect the total cell surface expression of beta 1 integrins. In contrast, cytokines like IL-5 prevent beta 1 integrin activation while promoting beta 2 integrin function. Furthermore, ligation of integrins can regulate the effector functions of the cell. For example, eosinophil adhesion via beta 1 and/or beta 2 integrins has been shown to alter a variety of functional responses including degranulation and apoptosis. Thus, integrins appear to be important in mediating eosinophil migration and activation in allergic inflammation. Strategies that interfere with these processes may prove to be useful for treatment of allergic diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sepsis is a systemic inflammatory response commonly caused by bacterial infection. We demonstrated that the outcome of sepsis induced by cecal ligation and puncture (CLP) correlates with the severity of the neutrophil migration failure towards infectious focus. Failure appears to be due to a decrease in the rolling and adhesion of neutrophil to endothelium cells. It seems that neutrophil migration impairment is mediated by the circulating inflammatory cytokines, such as TNF-alpha and IL-8, which induce the nitric oxide (NO) production systemically. It is supported by the fact that intravenous administration of these cytokines reduces the neutrophil migration induced by different inflammatory stimuli, and in severe sepsis the circulating concentrations of the cytokines and chemokines are significantly increased. Moreover, the neutrophil migration failure and the reduction in the rolling/adhesion were not observed in iNOS-/- mice and, aminoguanidine prevented this event. We also demonstrated that the failure of neutrophil migration is a Toll-4 receptor (TLR4) dependent mechanism, since it was not observed in TLR4 deficient mice. Furthermore, it was also observed that circulating neutrophils obtained from septic patients present failure of neutrophil chemotaxis toward fMLP, IL-8, and LTB4 and an increased in sera concentrations of NO3 and cytokines. In conclusion, we demonstrated that, in sepsis, failure of neutrophil migration is critical for the outcome and that NO is involved in the process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The 32-bp deletion in the HIV-1 co-receptor CCR5 confers a high degree of resistance to HIV-1 infection in homozygous individuals for the deleted allele and partial protection against HIV-1 during disease progression in heterozygotes. Natural ligands for CCR5, MIP-1alpha, MIP-1ß and RANTES, have been shown to inhibit HIV replication in CD4+ T cells. In the present study, we examined the CCR5 genotype by PCR and the plasma levels of RANTES and MIP-1alpha by ELISA among blood donors (N = 26) and among HIV-1-infected individuals (N = 129). The control group consisted of healthy adult volunteers and HIV-1-infected subjects were an asymptomatic and heterogeneous group of individuals with regard to immunologic and virologic markers of HIV-1 disease. The frequency of the CCR5 mutant allele (delta32ccr5) in this population was 0.032; however, no delta32ccr5 homozygote was detected. These results could be related to the intense ethnic admixture of the Brazilian population. There was no correlation between circulating ß-chemokines (MIP-1alpha, RANTES) and viral load in HIV-infected individuals. RANTES concentrations in plasma samples from HIV+ patients carrying the homozygous CCR5 allele (CCR5/CCR5) (28.23 ng/ml) were higher than in the control samples (16.07 ng/ml; P<0.05); however, this HIV+ patient group (mean 26.23 pg/ml) had significantly lower concentrations of MIP-1alpha than those observed in control samples (mean 31.20 pg/ml; P<0.05). Both HIV-1-infected and uninfected individuals heterozygous for the delta32ccr5 allele had significantly lower concentrations of circulating RANTES (mean 16.07 and 6.11 ng/ml, respectively) than CCR5/CCR5 individuals (mean 28.23 and 16.07 ng/ml, respectively; P<0.05). These findings suggest that the CCR5 allele and ß-chemokine production may affect the immunopathogenesis of HIV-1.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Eosinophils, along with mast cells are key cells involved in the innate immune response against parasitic infection whereas the adaptive immune response is largely dependent on lymphocytes. In chronic parasitic disease and in chronic allergic disease, IL-5 is predominantly a T cell derived cytokine which is particularly important for the terminal differentiation, activation and survival of committed eosinophil precursors. The human IL-5 gene is located on chromosome 5 in a gene cluster that contains the evolutionary related IL-4 family of cytokine genes. The human IL-5 receptor complex is a heterodimer consisting of a unique a subunit (predominantly expressed on eosinophils) and a beta subunit which is shared between the receptors for IL-3 & GM-CSF (more widely expressed). The a subunit is required for ligand-specific binding whereas association with the beta subunit results in increased binding affinity. The alternative splicing of the alphaIL-5R gene which contains 14 exons can yield several alphaIL-5R isoforms including a membrane-anchored isoform (alphaIL-5Rm) and a soluble isoform (alphaIL-5Rs). Cytokines such as IL-5 produce specific and non-specific cellular responses through specific cell membrane receptor mediated activation of intracellular signal transduction pathways which, to a large part, regulate gene expression. The major intracellular signal transduction mechanism is activation of non-receptor associated tyrosine kinases including JAK and MAP kinases which can then transduce signals via a novel family of transcriptional factors named signal transducers and activators of transcription (STATS). JAK2, STAT1 and STAT 5 appear to be particularly important in IL-5 mediated eosinophil responses. Asthma is characterized by episodic airways obstruction, increased bronchial responsiveness, and airway inflammation. Several studies have shown an association between the number of activated T cells and eosinophils in the airways and abnormalities in FEV1, airway reactivity and clinical severity in asthma. It has now been well documented that IL-5 is highly expressed in the bronchial mucosa of atopic and intrinsic asthmatics and that the increased IL-5 mRNA present in airway tissues is predominantly T cell derived. Immunocytochemical staining of bronchial biopsy sections has confirmed that IL-5 mRNA transcripts are translated into protein in asthmatic subjects. Furthermore, the number of activated CD 4 + T cells and IL-5 mRNA positive cells are increased in asthmatic airways following antigen challenge and studies that have examined IL-5 expression in asthmatic subjects before and after steroids have shown significantly decreased expression following oral corticosteroid treatment in steroid-sensitive asthma but not in steroid resistant and chronic severe steroid dependent asthma. The link between T cell derived IL-5 and eosinophil activation in asthmatic airways is further strengthened by the demonstration that there is an increased number of alphaIL-5R mRNA positive cells in the bronchial biopsies of atopic and non-atopic asthmatic subjects and that the eosinophil is the predominant site of this increased alphaIL-5R mRNA expression. We have also shown that the subset of activated eosinophils that expressed mRNA for membrane bound alpha IL5r inversely correlated with FEV1, whereas the subset of activated eosinophils that expressed mRNA for soluble alphaIL5r directly correlated with FEV1. Hence, not only does this data suggest that the presence of eosinophils expressing alphaIL-5R mRNA contribute towards the pathogenesis of bronchial asthma, but also that the eosinophil phenotype with respect to alphaIL-5R isoform expression is of central importance. Finally, there are several animal, and more recently in vitro lung explant, models of allergen induced eosinophilia, late airway responses(LARS), and bronchial hyperresponsiveness(BHR) - all of which support a link between IL-5 and airway eosinophila and bronchial hyperresponsiveness. The most direct demonstration of T cell involvement in LARS is the finding that these physiological responses can be transferred by CD4+ but not CD8+ T cells in rats. The importance of IL-5 in animal models of allergen induced bronchial hyperresponsiveness has been further demonstrated by a number of studies which have indicated that IL-5 administration is able to induce late phase responses and BHR and that anti-IL-5 antibody can block allergen induced late phase responses and BHR. In summary, activated T lymphocytes, IL5 production and eosinophil activation are particularly important in the asthmatic response. Human studies in asthma and studies in allergic animal models have clearly emphasised the unique role of IL-5 in linking T lymphocytes and adaptive immunity, the eosinophil effector cell, and the asthma phenotype. The central role of activated lymphocytes and eosinophils in asthma would argue for the likely therapeutic success of strategies to block T cell and eosinophil activation (eg steroids). Importantly, more targeted therapies may avoid the complications associated with steroids. Such therapies could target key T cell activation proteins and cytokines by various means including blocking antibodies (eg anti-CD4, anti-CD40, anti-IL-5 etc), antisense oligonucleotides to their specific mRNAs, and/or selective inhibition of the promoter sites for these genes. Another option would be to target key eosinophil activation mechanisms including the aIL5r. As always, the risk to benefit ratio of such strategies await the results of well conducted clinical trials.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Schistosomiasis, classified by the World Health Organization as a neglected tropical disease, is an intravascular parasitic disease associated to a chronic inflammatory state. Evidence implicating inflammation in vascular dysfunction continues to mount, which, broadly defined, reflects a failure in the control of intracellular Ca2+ and consequently, vascular contraction. Therefore, we measured aorta contraction induced by 5-hydroxytryptamine (5-HT) and endothelin-1 (ET-1), two important regulators of vascular contraction. Isometric aortic contractions were determined in control and Schistosoma mansoni-infected mice. In the infected animals, 5-HT induced a 50% higher contraction in relation to controls and we also observed an increased contraction in response to Ca2+ mobilisation from sarcoplasmic reticulum. Nevertheless, Rho kinase inhibition reduced the contraction in response to 5-HT equally in both groups, discarding an increase of the contractile machinery sensitivity to Ca2+. Furthermore, no alteration was observed for contractions induced by ET-1 in both groups. Our data suggest that an immune-vascular interaction occurs in schistosomiasis, altering vascular contraction outside the mesenteric portal system. More importantly, it affects distinct intracellular signalling involved in aorta contraction, in this case increasing 5-HT receptor signalling.