37 resultados para TEMPERATURE REQUIREMENT MODEL
Resumo:
The objective of this work was to determine the maintenance requirement and the deposition efficiency of lysine in growing pigs. It was used the incomplete changeover experimental design, with replicates over time. Twelve castrated pigs with average body weight (BW) of 52±2 kg were kept in metabolism crates with a controlled temperature of 22ºC. The diets were formulated to supply 30, 50, 60, and 70% of the expected requirements of standardized lysine, and provided at 2.6 times the energy requirements for maintenance. The trial lasted 24 days and was divided into two periods of 12 days: seven days for animal adaptation to the diet and five days for sample collection. The increasing content of lysine in the diet did not affect dry matter intake of the pigs. The amount of nitrogen excreted was 47% of the nitrogen intake, of which 35% was excreted through feces and 65% through urine. The estimated endogenous losses of lysine were 36.4 mg kg-1 BW0.75. The maintenance requirement of lysine for pigs weighing around 50 kg is 40.4 mg kg-1 BW0.75, and the deposition efficiency of lysine is 90%.
Resumo:
OH LIF-thermometry was applied to premixed ethanol flames at atmospheric pressure in a burner for three flame conditions. Flame temperatures were simulated from energy equation with PREMIX code of CHEMKIN software package for comparison. A kinetic modeling based on a model validated through chemiluminescence measurements and on a set of reactions for nitrogen chemistry was evaluated. Marinov's mechanism was also tested. Sensitivity analysis was performed for fuel-rich flame condition with Φ = 1.34. Simulated temperatures from both reaction mechanisms evaluated were higher than experimental values. However, the proposed kinetic modeling resulted in temperature profiles qualitatively very close to the experimental.
Resumo:
Fusarium Head Blight (FHB) is a disease of great concern in wheat (Triticum aestivum). Due to its relatively narrow susceptible phase and environmental dependence, the pathosystem is suitable for modeling. In the present work, a mechanistic model for estimating an infection index of FHB was developed. The model is process-based driven by rates, rules and coefficients for estimating the dynamics of flowering, airborne inoculum density and infection frequency. The latter is a function of temperature during an infection event (IE), which is defined based on a combination of daily records of precipitation and mean relative humidity. The daily infection index is the product of the daily proportion of susceptible tissue available, infection frequency and spore cloud density. The model was evaluated with an independent dataset of epidemics recorded in experimental plots (five years and three planting dates) at Passo Fundo, Brazil. Four models that use different factors were tested, and results showed all were able to explain variation for disease incidence and severity. A model that uses a correction factor for extending host susceptibility and daily spore cloud density to account for post-flowering infections was the most accurate explaining 93% of the variation in disease severity and 69% of disease incidence according to regression analysis.
Resumo:
ABSTRACT In the present study, the influence of temperature (15, 20, 25, 30 and 35°C) and leaf wetness period (6, 12, 24 and 48 hours) on the severity of Cercospora leaf spot of beet, caused by Cercospora beticola, was studied under controlled conditions. Lesion density was influenced by temperature and leaf wetness duration (P<0.05). Data were subjected to nonlinear regression analysis. The generalized beta function was used for fitting the disease severity and temperature data, while a logistic function was chosen to represent the effect of leaf wetness on the severity of Cercospora leaf spot. The response surface resultant of the product of the two functions was expressed as ES = 0.0001105 * (((x-8)2.294387) * ((36-x)0.955017)) * (0.39219/(1+25.93072 * exp (-0.16704*y))), where: ES represents the estimated severity value (0.1); x, the temperature (ºC) and y, the leaf wetness duration (hours). This model should be validated under field conditions to assess its use as a computational forecast system for Cercospora leaf spot of beet.
Resumo:
ABSTRACT In the present study, onion plants were tested under controlled conditions for the development of a climate model based on the influence of temperature (10, 15, 20 and 25°C) and leaf wetness duration (6, 12, 24 and 48 hours) on the severity of Botrytis leaf blight of onion caused by Botrytis squamosa. The relative lesion density was influenced by temperature and leaf wetness duration (P <0.05). The disease was most severe at 20°C. Data were subjected to nonlinear regression analysis. Beta generalized function was used to adjust severity and temperature data, while a logistic function was chosen to represent the effect of leaf wetness on the severity of Botrytis leaf blight. The response surface obtained by the product of two functions was expressed as ES = 0.008192 * (((x-5)1.01089) * ((30-x)1.19052)) * (0.33859/(1+3.77989 * exp (-0.10923*y))), where ES represents the estimated severity value (0.1); x, the temperature (°C); and y, the leaf wetness (in hours). This climate model should be validated under field conditions to verify its use as a computational system for the forecasting of Botrytis leaf blight in onion.
Resumo:
To study Assessing the impact of tillage practices on soil carbon losses dependents it is necessary to describe the temporal variability of soil CO2 emission after tillage. It has been argued that large amounts of CO2 emitted after tillage may serve as an indicator for longer-term changes in soil carbon stocks. Here we present a two-step function model based on soil temperature and soil moisture including an exponential decay in time component that is efficient in fitting intermediate-term emission after disk plow followed by a leveling harrow (conventional), and chisel plow coupled with a roller for clod breaking (reduced) tillage. Emission after reduced tillage was described using a non-linear estimator with determination coefficient (R²) as high as 0.98. Results indicate that when emission after tillage is addressed it is important to consider an exponential decay in time in order to predict the impact of tillage in short-term emissions.
Resumo:
The objective of this work was to develop and validate a mathematical model to estimate the duration of cotton (Gossypium hirsutum L. r. latifolium hutch) cycle in the State of Goiás, Brazil, by applying the method of growing degree-days (GD), and considering, simultaneously, its time-space variation. The model was developed as a linear combination of elevation, latitude, longitude, and Fourier series of time variation. The model parameters were adjusted by using multiple-linear regression to the observed GD accumulated with air temperature in the range of 15°C to 40°C. The minimum and maximum temperature records used to calculate the GD were obtained from 21 meteorological stations, considering data varying from 8 to 20 years of observation. The coefficient of determination, resulting from the comparison between the estimated and calculated GD along the year was 0.84. Model validation was done by comparing estimated and measured crop cycle in the period from cotton germination to the stage when 90 percent of bolls were opened in commercial crop fields. Comparative results showed that the model performed very well, as indicated by the Pearson correlation coefficient of 0.90 and Willmott agreement index of 0.94, resulting in a performance index of 0.85.
Resumo:
The objective of this study was to simulate the impact of elevated temperature scenarios on leaf development of potato in Santa Maria, RS, Brazil. Leaf appearance was estimated using a multiplicative model that has a non-linear temperature response function which calculates the daily leaf appearance rate (LAR, leaves day-1) and the accumulated number of leaves (LN) from crop emergence to the appearance of the upper last leaf. Leaf appearance was estimated during 100 years in the following scenarios: current climate, +1 °C, +2 °C, +3 °C, +4 °C e +5 °C. The LAR model was estimated with coefficients of the Asterix cultivar in five emergence dates and in two growing seasons (Fall and Spring). Variable of interest was the duration (days) of the crop emergence to the appearance of the final leaf number (EM-FLN) phase. Statistical analysis was performed assuming a three-factorial experiment, with main effects being climate scenarios, growing seasons, and emergence dates in a completely randomized design using years (one hundred) as replications. The results showed that warmer scenarios lead to an increase, in the fall, and a decrease, in the spring growing season, in the duration of the leaf appearance phase, indicating high vulnerability and complexity of the response of potato crop grown in a Subtropical environment to climate change.
Resumo:
The air dry-bulb temperature (t db),as well as the black globe humidity index (BGHI), exert great influence on the development of broiler chickens during their heating phase. Therefore, the aim of this study was to analyze the structure and the magnitude of the t db and BGHI spatial variability, using geostatistics tools such as semivariogram analysis and also producing kriging maps. The experiment was conducted in the west mesoregion of the states of Minas Gerais in 2010, in a commercial broiler house with heating system consisting of two furnaces that heat the air indirectly, in the firsts 14 days of the birds' life. The data were registered at intervals of five minutes in the period from 8 a.m. to 10 a.m. The variables were evaluated by variograms fitted by residual maximum likelihood (REML) testing the Spherical and Exponential models. Kriging maps were generated based on the best model used to fit the variogram. It was possible to characterize the variability of the t db and BGHI, which allowed observing the spatial dependence by using geostatistics techniques. In addition, the use of geostatistics and distribution maps made possible to identify problems in the heating system in regions inside the broiler house that may harm the development of chicks.
Resumo:
During vehicle deceleration due to braking there is friction between the lining surface and the brake drum or disc. In this process the kinetic energy of vehicle is turned into thermal energy that raises temperature of the components. The heating of the brake system in the course of braking is a great problem, because besides damaging the system, it may also affect the wheel and tire, which can cause accidents. In search of the best configuration that considers the true conditions of use, without passing the safety limits, models and formulations are presented with respect to the brake system, considering different braking conditions and kinds of brakes. Some modeling was analyzed using well-known methods. The flat plate model considering energy conservation was applied to a bus, using for this a computer program. The vehicle is simulated to undergo an emergency braking, considering the change of temperature on the lining-drum. The results include deceleration, braking efficiency, wheel resistance, normal reaction on the tires and the coefficient of adhesion. Some of the results were compared with dynamometer tests made by FRAS-LE and others were compared with track tests made by Mercedes-Benz. The convergence between the results and the tests is sufficient to validate the mathematical model. The computer program makes it possible to simulate the brake system performance in the vehicle. It assists the designer during the development phase and reduces track tests.
Resumo:
Specific knowledge about the dormancy, germination, and emergence patterns of weed species aids the development of integrated management strategies. Laboratory studies were conducted to determine the effect of several environmental factors on seed germination and seedling emergence of Cyperus difformis. Germination of freshly harvested seeds was inhibited by darkness; however, when seeds were subsequently transferred to complete light they germinated readily. Our results showed that 2 wk of cold stratification overcome the light requirement for germination. Seeds of C. difformis were able to germinate over a broad range of temperatures (25/15, 30/20, 35/25, and 40/30 ºC day/night). The response of germination rate to temperature was described as a non-linear function. Based on model outputs, the base, the optimum and the ceiling temperatures were estimated as 14.81, 37.72 and 45 ºC, respectively. A temperature of 120 ºC for a 5 min was required to inhibit 50% of maximum germination. The osmotic potential and salinity required for 50% inhibition of maximum germination were -0.47 MPa and 135.57 mM, respectively. High percentage of seed germination (89%) was observed at pH=6 and decreased to 12% at alkaline medium (pH 9) pH. Seeds sown on the soil surface gave the greatest percentage of seedling emergence, and no seedlings emerged from seeds buried in soil at depths of 1 cm.
Resumo:
An increase in daily mortality from myocardial infarction has been observed in association with meteorological factors and air pollution in several cities in the world, mainly in the northern hemisphere. The objective of the present study was to analyze the independent effects of environmental variables on daily counts of death from myocardial infarction in a subtropical region in South America. We used the robust Poisson regression to investigate associations between weather (temperature, humidity and barometric pressure), air pollution (sulfur dioxide, carbon monoxide, and inhalable particulate), and the daily death counts attributed to myocardial infarction in the city of São Paulo in Brazil, where 12,007 fatal events were observed from 1996 to 1998. The model was adjusted in a linear fashion for relative humidity and day-of-week, while nonparametric smoothing factors were used for seasonal trend and temperature. We found a significant association of daily temperature with deaths due to myocardial infarction (P < 0.001), with the lowest mortality being observed at temperatures between 21.6 and 22.6ºC. Relative humidity appeared to exert a protective effect. Sulfur dioxide concentrations correlated linearly with myocardial infarction deaths, increasing the number of fatal events by 3.4% (relative risk of 1.03; 95% confidence interval = 1.02-1.05) for each 10 µg/m³ increase. In conclusion, this study provides evidence of important associations between daily temperature and air pollution and mortality from myocardial infarction in a subtropical region, even after a comprehensive control for confounding factors.
Resumo:
Pressure-induced dissociation of a turbid solution of casein micelles was studied in situ in static and dynamic light scattering experiments. We show that at high pressure casein micelles decompose into small fragments comparable in size to casein monomers. At intermediate pressure we observe particles measuring 15 to 20 nm in diameter. The stability against pressure dissociation increased with temperature, suggesting enhanced hydrophobic contacts. The pressure transition curves are biphasic, compatible with a temperature (but not pressure)-dependent conformational equilibrium of two micelle species. Our thermodynamic model predicts an increase in structural entropy with temperature.
Resumo:
Sepsis is a systemic inflammatory response that can lead to tissue damage and death. In order to increase our understanding of sepsis, experimental models are needed that produce relevant immune and inflammatory responses during a septic event. We describe a lipopolysaccharide tolerance mouse model to characterize the cellular and molecular alterations of immune cells during sepsis. The model presents a typical lipopolysaccharide tolerance pattern in which tolerance is related to decreased production and secretion of cytokines after a subsequent exposure to a lethal dose of lipopolysaccharide. The initial lipopolysaccharide exposure also altered the expression patterns of cytokines and was followed by an 8- and a 1.5-fold increase in the T helper 1 and 2 cell subpopulations. Behavioral data indicate a decrease in spontaneous activity and an increase in body temperature following exposure to lipopolysaccharide. In contrast, tolerant animals maintained production of reactive oxygen species and nitric oxide when terminally challenged by cecal ligation and puncture (CLP). Survival study after CLP showed protection in tolerant compared to naive animals. Spleen mass increased in tolerant animals followed by increases of B lymphocytes and subpopulation Th1 cells. An increase in the number of stem cells was found in spleen and bone marrow. We also showed that administration of spleen or bone marrow cells from tolerant to naive animals transfers the acquired resistance status. In conclusion, lipopolysaccharide tolerance is a natural reprogramming of the immune system that increases the number of immune cells, particularly T helper 1 cells, and does not reduce oxidative stress.
Resumo:
A theoretical model is used to predict the growth of Staphylococcus aureus in a pasteurized meat product kept at ambient temperatures for several hours. For this purpose, the temperature profiles of some cities of Mexico were combined with literature data on the kinetics of S. aureus growth. As shown by theoretical predictions, if the food is kept at ambient temperature, the average daily temperature may not give accurate predictions.