26 resultados para T Cell Antigen Receptor
Resumo:
An atypical case of acquired immunodeficiency syndrome-associated mucocutaneous lesions due to Leishmania braziliensis is described. Many vacuolated macrophages laden with amastigote forms of the parasite were found in the lesions. Leishmanin skin test and serology for leishmaniasis were both negative. The patient was resistant to therapy with conventional drugs (antimonial and amphotericin B). Interestingly, remission of lesions was achieved after an alternative combined therapy of antimonial associated with immunotherapy (whole promastigote antigens). Peripheral blood mononuclear cells were separated and stimulated in vitro with Leishmania antigens to test the lymphoproliferative responses (LPR). Before the combined immunochemotherapy, the LPR to leishmanial antigens was negligible (stimulation index - SI=1.4). After the first course of combined therapy it became positive (SI=4.17). The antigen responding cells were predominantly T-cells (47.5%) most of them with CD8+ phenotype (33%). Very low CD4+ cells (2.2%) percentages were detected. The increased T-cell responsiveness to leishmanial antigens after combined therapy was accompanied by interferon-g (IFN-g) production as observed in the cell culture supernatants. In this patient, healing of the leishmaniasis lesions was associated with the induction of a specific T-cell immune response, characterized by the production of IFN-g and the predominance of the CD8+ phenotype among the Leishmania-reactive T-cells.
Resumo:
The cellular nature of the infiltrate in cutaneous lesion of rhesus monkeys experimentally infected with Leishmania (L.) amazonensis was characterized by immunohistochemistry. Skin biopsies from infected animals with active or healing lesions were compared to non-infected controls (three of each type) to quantitate inflammatory cell types. Inflammatory cells (composed of a mixture of T lymphocyte subpopulations, macrophages and a small number of natural killer cells and granulocytes) were more numerous in active lesions than in healing ones. T-cells accounted for 44.7 ± 13.1% of the infiltrate in active lesions (versus CD2+= 40.3 ± 5.7% in healing lesions) and T-cell ratios favor CD8+ cells in both lesion types. The percentage of cells expressing class II antigen (HLA-DR+) in active lesions (95 ± 7.1%) was significantly higher (P < 0.005) from the healing lesions (42.7 ± 12.7%). Moreover, the expression of the activation molecules CD25 (@ 16%), the receptor for interleukin-2, suggests that many T cells are primed and proliferating in active lesions. Distinct histopathological patterns were observed in lesions at biopsy, but healing lesions contained more organized epithelioid granulomas and activated macrophages, followed by fibrotic substitution. The progression and resolution of skin lesions appears to be very similar to that observed in humans, confirming the potential for this to be used as a viable model to study the immune response in human cutaneous leishmaniasis.
Resumo:
In this study, we designed an experiment to predict a potential immunodominant T-cell epitope and evaluate the protectivity of this antigen in immunised mice. The T-cell epitopes of the candidate proteins (EgGST, EgA31, Eg95, EgTrp and P14-3-3) were detected using available web-based databases. The synthesised DNA was subcloned into the pET41a+ vector and expressed in Escherichia coli as a fusion to glutathione-S-transferase protein (GST). The resulting chimeric protein was then purified by affinity chromatography. Twenty female C57BL/6 mice were immunised with the antigen emulsified in Freund's adjuvant. Mouse splenocytes were then cultured in Dulbecco's Modified Eagle's Medium in the presence of the antigen. The production of interferon-γ was significantly higher in the immunised mice than in the control mice (> 1,300 pg/mL), but interleukin (IL)-10 and IL-4 production was not statistically different between the two groups. In a challenge study in which mice were infected with 500 live protoscolices, a high protectivity level (99.6%) was demonstrated in immunised BALB/C mice compared to the findings in the control groups [GST and adjuvant (Adj) ]. These results demonstrate the successful application of the predicted T-cell epitope in designing a vaccine against Echinococcus granulosus in a mouse model.
Resumo:
Previous reports from our group have demonstrated the association of molecular mimicry between cardiac myosin and the immunodominant Trypanosoma cruzi protein B13 with chronic Chagas' disease cardiomyopathy at both the antibody and heart-infiltrating T cell level. At the peripheral blood level, we observed no difference in primary proliferative responses to T. cruzi B13 protein between chronic Chagas' cardiopathy patients, asymptomatic chagasics and normal individuals. In the present study, we investigated whether T cells sensitized by T. cruzi B13 protein respond to cardiac myosin. T cell clones generated from a B13-stimulated T cell line obtained from peripheral blood of a B13-responsive normal donor were tested for proliferation against B13 protein and human cardiac myosin. The results showed that one clone responded to B13 protein alone and the clone FA46, displaying the highest stimulation index to B13 protein (SI = 25.7), also recognized cardiac myosin. These data show that B13 and cardiac myosin share epitopes at the T cell level and that sensitization of a T cell with B13 protein results in response to cardiac myosin. It can be hypothesized that this also occurs in vivo during T. cruzi infection which results in heart tissue damage in chronic Chagas' disease cardiomyopathy
Resumo:
A close correlation between vitamin D receptor (VDR) abundance and cell proliferation rate has been shown in NIH-3T3 fibroblasts, MCF-7 breast cancer and in HL-60 myeloblastic cells. We have now determined if this association occurs in other leukemic cell lines, U937 and K562, and if VDR content is related to c-myc expression, which is also linked to cell growth state. Upon phorbol myristate acetate (PMA) treatment, cells from the three lineages (HL-60, U937 and K562) differentiated and expressed specific surface antigens. All cell lines analyzed were growth inhibited by PMA and the doubling time was increased, mainly due to an increased fraction of cells in the G0/G1 phase, as determined by flow cytometry measurements of incorporated bromodeoxyuridine and cell DNA content. C-myc mRNA expression was down-regulated and closely correlated to cell growth arrest. However, VDR expression in leukemic cell lines, as determined by immunofluorescence and Northern blot assays, was not consistently changed upon inhibition of cell proliferation since VDR levels were down-regulated only in HL-60 cells. Our data suggest that VDR expression cannot be explained simply as a reflection of the leukemic cell growth state.
Resumo:
The aim of the present study was to investigate the expression of alpha-smooth muscle actin (alpha-SM-actin) and proliferating cell nuclear antigen (PCNA) in renal cortex from patients with focal segmental glomerulosclerosis (FSGS) and their correlations with parameters of renal disease progression. We analyzed renal biopsies from 41 patients with idiopathic FSGS and from 14 control individuals. The alpha-SM-actin immunoreaction was evaluated using a score that reflected the changes in the extent and intensity of staining in the glomerular or cortical area. The PCNA reaction was quantified by counting the labeled cells of the glomeruli or renal cortex. The results, reported as median ± percentile (25th; 75th), showed that the alpha-SM-actin scores in the glomeruli and tubulointerstitium from the renal cortex were 2.0 (2.0; 4.0) and 3.0 (3.0; 4.0), respectively, in patients with FSGS, and 0.5 (0.0; 1.0) and 0.0 (0.0; 0.5) in the controls. The number of PCNA-positive cells per glomerulus and graded field of tubulointerstitium from the renal cortex was 0.2 (0.0; 0.4) and 1.1 (0.3; 2.2), respectively, for patients with FSGS, and 0.0 (0.0; 0.5) and 0.0 (0.0; 0.0) for controls. The present data showed an increase of alpha-SM-actin and PCNA expression in glomeruli and renal cortex from FSGS patients. The extent of immunoreaction for alpha-SM-actin in the tubulointerstitial area was correlated with the intensity of proteinuria. However, there was no correlation between the kidney expression of these proteins and the reciprocal of plasma creatinine level or renal fibrosis. These findings suggest that the immunohistochemical alterations may be reversible.
Resumo:
We analyzed the genetic recombination pattern of the T-cell receptor beta-chain gene (TCR-beta) in order to identify clonal expansion of T-lymphocytes in 17 human T-lymphotropic virus type I (HTLV-I)-positive healthy carriers, 7 of them with abnormal features in the peripheral blood lymphocytes. Monoclonal or oligoclonal expansion of T-cells was detected in 5 of 7 HTLV-I-positive patients with abnormal lymphocytes and unconfirmed diagnosis by using PCR amplification of segments of TCR-beta gene, in a set of reactions that target 102 different variable (V) segments, covering all members of the 24 V families available in the gene bank, including the more recently identified segments of the Vbeta-5 and Vbeta-8 family and the two diversity beta segments. Southern blots, the gold standard method to detect T-lymphocyte clonality, were negative for all of these 7 patients, what highlights the low sensitivity of this method that requires a large amount of very high quality DNA. To evaluate the performance of PCR in the detection of clonality we also analyzed 18 leukemia patients, all of whom tested positive. Clonal expansion was not detected in any of the negative controls or healthy carriers without abnormal lymphocytes. In conclusion, PCR amplification of segments of rearranged TCR-beta is reliable and highly suitable for the detection of small populations of clonal T-cells in asymptomatic HTLV-I carriers who present abnormal peripheral blood lymphocytes providing an additional instrument for following up these patients with potentially higher risk of leukemia.
Resumo:
Inhibition of type-5 phosphodiesterase by sildenafil decreases capacitative Ca2+ entry mediated by transient receptor potential proteins (TRPs) in the pulmonary artery. These families of channels, especially the canonical TRP (TRPC) subfamily, may be involved in the development of bronchial hyperresponsiveness, a hallmark of asthma. In the present study, we evaluated i) the effects of sildenafil on tracheal rings of rats subjected to antigen challenge, ii) whether the extent of TRPC gene expression may be modified by antigen challenge, and iii) whether inhibition of type-5 phosphodiesterase (PDE5) may alter TRPC gene expression after antigen challenge. Sildenafil (0.1 µM to 0.6 mM) fully relaxed carbachol-induced contractions in isolated tracheal rings prepared from naive male Wistar rats (250-300 g) by activating the NO-cGMP-K+ channel pathway. Rats sensitized to antigen by intraperitoneal injections of ovalbumin were subjected to antigen challenge by ovalbumin inhalation, and their tracheal rings were used to study the effects of sildenafil, which more effectively inhibited contractions induced by either carbachol (10 µM) or extracellular Ca2+ restoration after thapsigargin (1 µM) treatment. Antigen challenge increased the expression of the TRPC1 and TRPC4 genes but not the expression of the TRPC5 and TRPC6 genes. Applied before the antigen challenge, sildenafil increased the gene expression, which was evaluated by RT-PCR, of TRPC1 and TRPC6, decreased TRPC5 expression, and was inert against TRPC4. Thus, we conclude that PDE5 inhibition is involved in the development of an airway hyperresponsive phenotype in rats after antigen challenge by altering TRPC gene expression.
Resumo:
The role of B cells in the pathogenesis of hepatitis B virus (HBV) infection has not been explored in depth. In the present study, the activation status of B cells from peripheral blood of healthy controls (N = 20) and patients with acute hepatitis B (AHB, N = 15) or chronic hepatitis B (CHB, N = 30) was evaluated by measuring the expression levels of B-cell activation markers CD69 and CD86, using quantitative real-time PCR and flow cytometry. Moreover, the potential mechanism underlying B-cell activation during HBV infection was further investigated by analyzing the expression profile of FCRL1, an intrinsic activation molecule of B cells. An elevation in the levels of B-cell activation markers including CD69 and CD86 was observed in the AHB patients (44.31 ± 9.27, 27.64 ± 9.26%) compared to CHB patients (30.35 ± 11.27, 18.41 ± 6.56%, P < 0.05), which was still higher than healthy controls (12.23 ± 7.84, 8.22 ± 3.43%, P < 0.05). Furthermore, the expression of FCRL1 was found to be similar to B-cell activation markers, which was highest in AHB patients (70.15 ± 17.11%), lowest in healthy donors (36.32 ± 9.98%, P < 0.05) and half-way between these levels in patients with CHB (55.17 ± 12.03%, P < 0.05). The results were positively associated with aberrant B-cell activation. These data suggest that B cells can play a role in HBV infection, and therefore more effort should be devoted to exploring their functions.