17 resultados para Stomatopod Crustaceans


Relevância:

10.00% 10.00%

Publicador:

Resumo:

One of the best known crustacean hormones is the crustacean hyperglycemic hormone (CHH). However, the mechanisms involved in hormone release in these animals are poorly understood, and thus constitute the central objective of the present study. Different groups of crustaceans belonging to diverse taxa (Chasmagnathus granulata, a grapsid crab and Orconectes limosus, an astacid) were injected with serotonin, fluoxetine, or a mixture of both, and glycemic values (C. granulata and O. limosus) and CHH levels (O. limosus) were determined after 2 h in either submerged animals or animals exposed to atmospheric air. Both serotonin and fluoxetine caused significant hyperglycemia (P<0.05) after injection into the blood sinus of the two species, an effect enhanced after exposure to atmospheric air. In C. granulata blood glucose increased from 6.1 to 43.3 and 11.4 mg/100 ml in submerged animals and from 5.7 to 55.2 and 22.5 mg/100 ml in air-exposed animals after treatment with serotonin and fluoxetine, respectively. In O. limosus the increases were from 1.2 to 59.7 and 135.2 mg/100 ml in submerged animals and from 2.5 to 200.3 and 193.6 mg/100 ml in air-exposed animals after treatment with serotonin and fluoxetine, respectively. Serotonin and fluoxetine also caused a significant increase in the circulating levels of CHH in O. limosus, from 11.9 to 43 and 45.7 fmol/ml in submerged animals and from 13.2 to 32.6 and 45.7 fmol/ml in air-exposed animals, respectively, thus confirming their action as neuroregulators in these invertebrates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Currently, sulfites are employed on board to inhibit melanosis (blackspot) on crustaceans. However, when used in excess this chemical compound not only can cause adverse reactions in SO2-sensitive individuals, but also favors the decomposition of trimethylamine oxide (TMAO) into dimethylamine (DMA) and formaldehyde (FA), thus compromising the quality of the product, which can be observed mainly through the texture change of the meat after cooking. This study was conducted to verify the increase of the contents of DMA and FA by the excessive use of sodium metabisulfite in white shrimp (Penaeus schmitti). For laboratory trials, shrimp were beheaded, washed and immersed in a 2% sodium metabisulfite solution for 10 minutes. Specimens were stored either on ice and maintained for 48 hours in refrigeration, or stored in a freezer for 48 hours. Samples were collected at intervals of 0, 24 and 48 hours, and analyzed for residual SO2, TMAO, TMA, DMA and FA. The immersion of shrimp in a 2% sodium metabisulfite for 10 minutes favored the decomposition of TMAO which greatly increased the contents of DMA and FA. The FA and DMA measured in fresh shrimp was low. Moreover, the storage of shrimp tails on ice resulted in a significant reduction of the TMA, DMA, FA and residual SO2 contents compared to the specimens under frozen storage.