53 resultados para Stiffness Prediction
Resumo:
Erosion is deleterious because it reduces the soil's productivity capacity for growing crops and causes sedimentation and water pollution problems. Surface and buried crop residue, as well as live and dead plant roots, play an important role in erosion control. An efficient way to assess the effectiveness of such materials in erosion reduction is by means of decomposition constants as used within the Revised Universal Soil Loss Equation - RUSLE's prior-land-use subfactor - PLU. This was investigated using simulated rainfall on a 0.12 m m-1 slope, sandy loam Paleudult soil, at the Agriculture Experimental Station of the Federal University of Rio Grande do Sul, in Eldorado do Sul, State of Rio Grande do Sul, Brazil. The study area had been covered by native grass pasture for about fifteen years. By the middle of March 1996, the sod was mechanically mowed and the crop residue removed from the field. Late in April 1996, the sod was chemically desiccated with herbicide and, about one month later, the following treatments were established and evaluated for sod biomass decomposition and soil erosion, from June 1996 to May 1998, on duplicated 3.5 x 11.0 m erosion plots: (a) and (b) soil without tillage, with surface residue and dead roots; (c) soil without tillage, with dead roots only; (d) soil tilled conventionally every two-and-half months, with dead roots plus incorporated residue; and (e) soil tilled conventionally every six months, with dead roots plus incorporated residue. Simulated rainfall was applied with a rotating-boom rainfall simulator, at an intensity of 63.5 mm h-1 for 90 min, eight to nine times during the experimental period (about every two-and-half months). Surface and subsurface sod biomass amounts were measured before each rainfall test along with the erosion measurements of runoff rate, sediment concentration in runoff, soil loss rate, and total soil loss. Non-linear regression analysis was performed using an exponential and a power model. Surface sod biomass decomposition was better depicted by the exponential model, while subsurface sod biomass was by the power model. Subsurface sod biomass decomposed faster and more than surface sod biomass, with dead roots in untilled soil without residue on the surface decomposing more than dead roots in untilled soil with surface residue. Tillage type and frequency did not appreciably influence subsurface sod biomass decomposition. Soil loss rates increased greatly with both surface sod biomass decomposition and decomposition of subsurface sod biomass in the conventionally tilled soil, but they were minimally affected by subsurface sod biomass decomposition in the untilled soil. Runoff rates were little affected by the studied treatments. Dead roots plus incorporated residues were effective in reducing erosion in the conventionally tilled soil, while consolidation of the soil surface was important in no-till. The residual effect of the turned soil on erosion diminished gradually with time and ceased after two years.
Resumo:
The soil CO2 emission has high spatial variability because it depends strongly on soil properties. The purpose of this study was to (i) characterize the spatial variability of soil respiration and related properties, (ii) evaluate the accuracy of results of the ordinary kriging method and sequential Gaussian simulation, and (iii) evaluate the uncertainty in predicting the spatial variability of soil CO2 emission and other properties using sequential Gaussian simulations. The study was conducted in a sugarcane area, using a regular sampling grid with 141 points, where soil CO2 emission, soil temperature, air-filled pore space, soil organic matter and soil bulk density were evaluated. All variables showed spatial dependence structure. The soil CO2 emission was positively correlated with organic matter (r = 0.25, p < 0.05) and air-filled pore space (r = 0.27, p < 0.01) and negatively with soil bulk density (r = -0.41, p < 0.01). However, when the estimated spatial values were considered, the air-filled pore space was the variable mainly responsible for the spatial characteristics of soil respiration, with a correlation of 0.26 (p < 0.01). For all variables, individual simulations represented the cumulative distribution functions and variograms better than ordinary kriging and E-type estimates. The greatest uncertainties in predicting soil CO2 emission were associated with areas with the highest estimated values, which produced estimates from 0.18 to 1.85 t CO2 ha-1, according to the different scenarios considered. The knowledge of the uncertainties generated by the different scenarios can be used in inventories of greenhouse gases, to provide conservative estimates of the potential emission of these gases.
Resumo:
Soil information is needed for managing the agricultural environment. The aim of this study was to apply artificial neural networks (ANNs) for the prediction of soil classes using orbital remote sensing products, terrain attributes derived from a digital elevation model and local geology information as data sources. This approach to digital soil mapping was evaluated in an area with a high degree of lithologic diversity in the Serra do Mar. The neural network simulator used in this study was JavaNNS and the backpropagation learning algorithm. For soil class prediction, different combinations of the selected discriminant variables were tested: elevation, declivity, aspect, curvature, curvature plan, curvature profile, topographic index, solar radiation, LS topographic factor, local geology information, and clay mineral indices, iron oxides and the normalized difference vegetation index (NDVI) derived from an image of a Landsat-7 Enhanced Thematic Mapper Plus (ETM+) sensor. With the tested sets, best results were obtained when all discriminant variables were associated with geological information (overall accuracy 93.2 - 95.6 %, Kappa index 0.924 - 0.951, for set 13). Excluding the variable profile curvature (set 12), overall accuracy ranged from 93.9 to 95.4 % and the Kappa index from 0.932 to 0.948. The maps based on the neural network classifier were consistent and similar to conventional soil maps drawn for the study area, although with more spatial details. The results show the potential of ANNs for soil class prediction in mountainous areas with lithological diversity.
Resumo:
Visible and near infrared (vis-NIR) spectroscopy is widely used to detect soil properties. The objective of this study is to evaluate the combined effect of moisture content (MC) and the modeling algorithm on prediction of soil organic carbon (SOC) and pH. Partial least squares (PLS) and the Artificial neural network (ANN) for modeling of SOC and pH at different MC levels were compared in terms of efficiency in prediction of regression. A total of 270 soil samples were used. Before spectral measurement, dry soil samples were weighed to determine the amount of water to be added by weight to achieve the specified gravimetric MC levels of 5, 10, 15, 20, and 25 %. A fiber-optic vis-NIR spectrophotometer (350-2500 nm) was used to measure spectra of soil samples in the diffuse reflectance mode. Spectra preprocessing and PLS regression were carried using Unscrambler® software. Statistica® software was used for ANN modeling. The best prediction result for SOC was obtained using the ANN (RMSEP = 0.82 % and RPD = 4.23) for soil samples with 25 % MC. The best prediction results for pH were obtained with PLS for dry soil samples (RMSEP = 0.65 % and RPD = 1.68) and soil samples with 10 % MC (RMSEP = 0.61 % and RPD = 1.71). Whereas the ANN showed better performance for SOC prediction at all MC levels, PLS showed better predictive accuracy of pH at all MC levels except for 25 % MC. Therefore, based on the data set used in the current study, the ANN is recommended for the analyses of SOC at all MC levels, whereas PLS is recommended for the analysis of pH at MC levels below 20 %.
Resumo:
ABSTRACT Intrinsic equilibrium constants for 22 representative Brazilian Oxisols were estimated from a cadmium adsorption experiment. Equilibrium constants were fitted to two surface complexation models: diffuse layer and constant capacitance. Intrinsic equilibrium constants were optimized by FITEQL and by hand calculation using Visual MINTEQ in sweep mode, and Excel spreadsheets. Data from both models were incorporated into Visual MINTEQ. Constants estimated by FITEQL and incorporated in Visual MINTEQ software failed to predict observed data accurately. However, FITEQL raw output data rendered good results when predicted values were directly compared with observed values, instead of incorporating the estimated constants into Visual MINTEQ. Intrinsic equilibrium constants optimized by hand calculation and incorporated in Visual MINTEQ reliably predicted Cd adsorption reactions on soil surfaces under changing environmental conditions.
Resumo:
The objective of this work was to determine the viability equation constants for cottonseed and to detect the occurrence and depletion of hardseededness. Three seedlots of Brazilian cultivars IAC-19 and IAC-20 were tested, using 12 moisture content levels, ranging from 2.2 to 21.7% and three storage temperatures, 40, 50 and 65ºC. Seed moisture content level was reached from the initial value (around 8.8%) either by rehydration, in a closed container, or by drying in desiccators containing silica gel, both at 20ºC. Twelve seed subsamples for each moisture content/temperature treatment were sealed in laminated aluminium-foil packets and stored in incubators at those temperatures, until complete survival curves were obtained. Seed equilibrium relative humidity was recorded. Hardseededness was detected at moisture content levels below 6% and its releasing was achieved either naturally, during storage period, or artificially through seed coat removal. The viability equation quantified the response of seed longevity to storage environment well with K E = 9.240, C W = 5.190, C H = 0.03965 and C Q = 0.000426. The lower limit estimated for application of this equation at 65ºC was 3.6% moisture content.
Resumo:
The objective of this work was to estimate the genetic parameters, genotypic and phenotypic correlations, and direct and indirect genetic gains among and within rubber tree (Hevea brasiliensis) progenies. The experiment was set up at the Municipality of Jaú, SP, Brazil. A randomized complete block design was used, with 22 treatments (progenies), 6 replicates, and 10 plants per plot at a spacing of 3x3 m. Three‑year‑old progenies were assessed for girth, rubber yield, and bark thickness by direct and indirect gains and genotypic correlations. The number of latex vessel rings showed the best correlations, correlating positively and significantly with girth and bark thickness. Selection gains among progenies were greater than within progeny for all the variables analyzed. Total gains obtained were high, especially for girth increase and rubber yield, which were 93.38 and 105.95%, respectively. Young progeny selection can maximize the expected genetic gains, reducing the rubber tree selection cycle.
Resumo:
The objective of this work was to evaluate sampling density on the prediction accuracy of soil orders, with high spatial resolution, in a viticultural zone of Serra Gaúcha, Southern Brazil. A digital elevation model (DEM), a cartographic base, a conventional soil map, and the Idrisi software were used. Seven predictor variables were calculated and read along with soil classes in randomly distributed points, with sampling densities of 0.5, 1, 1.5, 2, and 4 points per hectare. Data were used to train a decision tree (Gini) and three artificial neural networks: adaptive resonance theory, fuzzy ARTMap; self‑organizing map, SOM; and multi‑layer perceptron, MLP. Estimated maps were compared with the conventional soil map to calculate omission and commission errors, overall accuracy, and quantity and allocation disagreement. The decision tree was less sensitive to sampling density and had the highest accuracy and consistence. The SOM was the less sensitive and most consistent network. The MLP had a critical minimum and showed high inconsistency, whereas fuzzy ARTMap was more sensitive and less accurate. Results indicate that sampling densities used in conventional soil surveys can serve as a reference to predict soil orders in Serra Gaúcha.
Resumo:
The objective of this work was to generate drift curves from pesticide applications on coffee plants and to compare them with two European drift-prediction models. The used methodology is based on the ISO 22866 standard. The experimental design was a randomized complete block with ten replicates in a 2x20 split-plot arrangement. The evaluated factors were: two types of nozzles (hollow cone with and without air induction) and 20 parallel distances to the crop line outside of the target area, spaced at 2.5 m. Blotting papers were used as a target and placed in each of the evaluated distances. The spray solution was composed of water+rhodamine B fluorescent tracer at a concentration of 100 mg L-1, for detection by fluorimetry. A spray volume of 400 L ha-1 was applied using a hydropneumatic sprayer. The air-induction nozzle reduces the drift up to 20 m from the treated area. The application with the hollow cone nozzle results in 6.68% maximum drift in the nearest collector of the treated area. The German and Dutch models overestimate the drift at distances closest to the crop, although the Dutch model more closely approximates the drift curves generated by both spray nozzles.
Resumo:
The objective of this work was to develop uni- and multivariate models to predict maximum soil shear strength (τmax) under different normal stresses (σn), water contents (U), and soil managements. The study was carried out in a Rhodic Haplustox under Cerrado (control area) and under no-tillage and conventional tillage systems. Undisturbed soil samples were taken in the 0.00-0.05 m layer and subjected to increasing U and σn, in shear strength tests. The uni- and multivariate models - respectively τmax=10(a+bU) and τmax=10(a+bU+cσn) - were significant in all three soil management systems evaluated and they satisfactorily explain the relationship between U, σn, and τmax. The soil under Cerrado has the highest shear strength (τ) estimated with the univariate model, regardless of the soil water content, whereas the soil under conventional tillage shows the highest values with the multivariate model, which were associated to the lowest water contents at the soil consistency limits in this management system.
Resumo:
Objective To evaluate the association of Doppler of uterine artery and flow-mediated dilation of brachial artery (FMD) in the assessment of placental perfusion and endothelial function to predict preeclampsia. Materials and Methods A total of 91 patients considered as at risk for developing preeclampsia were recruited at the prenatal unit of the authors' institution. All the patients underwent FMD and Doppler of uterine arteries between their 24th and 28th gestational weeks. Calculations of sensitivity and specificity for both isolated and associated methods were performed. Results Nineteen out of the 91 patients developed preeclampsia, while the rest remained normotensive. Doppler flowmetry of uterine arteries with presence of bilateral protodiastolic notch had sensitivity of 63.1% and specificity of 87.5% for the prediction of preeclampsia. Considering a cutoff value of 6.5%, FMD showed sensitivity of 84.2% and specificity of 73.6%. In a parallel analysis, as the two methods were associated, sensitivity was 94.2% and specificity, 64.4%. Conclusion The association of Doppler study of uterine arteries and FMD has proved to be an interesting clinical strategy for the prediction of preeclampsia, which may represent a positive impact on prenatal care of patients considered as at high-risk for developing such a condition.
Resumo:
Genetic algorithm and partial least square (GA-PLS) and kernel PLS (GA-KPLS) techniques were used to investigate the correlation between retention indices (RI) and descriptors for 117 diverse compounds in essential oils from 5 Pimpinella species gathered from central Turkey which were obtained by gas chromatography and gas chromatography-mass spectrometry. The square correlation coefficient leave-group-out cross validation (LGO-CV) (Q²) between experimental and predicted RI for training set by GA-PLS and GA-KPLS was 0.940 and 0.963, respectively. This indicates that GA-KPLS can be used as an alternative modeling tool for quantitative structure-retention relationship (QSRR) studies.
Resumo:
Asian rust of soybean [Glycine max (L.) Merril] is one of the most important fungal diseases of this crop worldwide. The recent introduction of Phakopsora pachyrhizi Syd. & P. Syd in the Americas represents a major threat to soybean production in the main growing regions, and significant losses have already been reported. P. pachyrhizi is extremely aggressive under favorable weather conditions, causing rapid plant defoliation. Epidemiological studies, under both controlled and natural environmental conditions, have been done for several decades with the aim of elucidating factors that affect the disease cycle as a basis for disease modeling. The recent spread of Asian soybean rust to major production regions in the world has promoted new development, testing and application of mathematical models to assess the risk and predict the disease. These efforts have included the integration of new data, epidemiological knowledge, statistical methods, and advances in computer simulation to develop models and systems with different spatial and temporal scales, objectives and audience. In this review, we present a comprehensive discussion on the models and systems that have been tested to predict and assess the risk of Asian soybean rust. Limitations, uncertainties and challenges for modelers are also discussed.
Resumo:
O objetivo do trabalho foi testar o modelo WEPP (Water Erosion Prediction Project), através de comparações entre volume de enxurrada e perda de solo observados experimentalmente, provenientes dos segmentos de estradas florestais submetidas à chuva natural com inclinações de 1 e 7% e comprimentos de rampa de 20 e 40 m, e aqueles preditos pelo aplicativo, visando o desenvolvimento de um modelo brasileiro de predição de erosão em estradas florestais. Na determinação da quantidade do material erodido foram instalados tambores coletores, com capacidade de 209,25 litros, localizados na parte inferior das estradas, onde foram inseridas tubulações de PVC de 2 polegadas para coleta dos sedimentos provenientes da estrada propriamente dita. Nos tambores coletores foram feitos orifícios nivelados e perfeitamente iguais, posicionados a 0,65 m do fundo do primeiro e a 0,60 m do fundo do segundo, que funcionaram como um divisor Geib. Nas parcelas de 20 e 40 m de comprimento foram feitos cinco e sete orifícios, respectivamente, no primeiro e segundo tambores. O terceiro tambor foi utilizado para coletar o excedente da enxurrada proveniente do segundo tambor. Os tambores foram ligados em série, através de cano PVC de 2 polegadas. Os dados de volume e intensidade de precipitação diária foram obtidos com a instalação de pluviômetro e pluviógrafo no local. O período de coleta de dados foi de um ano, concentrando-se na época das chuvas. Posteriormente, os arquivos de clima, precipitação, solo, inclinação e comprimento do segmento foram introduzidos e adaptados ao modelo de predição de erosão WEPP com o propósito de testá-lo, visando a confecção de um modelo apropriado às condições brasileiras.
Resumo:
A model to manage even-aged stands was developed using a modification of the Buckman model. Data from Eucalyptus urophylla and Eucalyptus cloeziana stands located in the Northern region of Minas Gerais State, Brazil were used in the formulation of the system. The proposed model generated precise and unbiased estimates in non-thinned stands.