18 resultados para Spatial data analysis


Relevância:

90.00% 90.00%

Publicador:

Resumo:

A study on the spatial distribution of the major weeds in maize was carried out in 2007 and 2008 in a field located in Golegã (Ribatejo region, Portugal). The geo-referenced sampling focused on 150 points of a 10 x 10 m mesh covering an area of 1.5 ha, before herbicide application and before harvest. In the first year, 40 species (21 botanical families) were identified at seedling stage and only 22 during the last observation. The difference in species richness can be attributed to maize monoculture favouring reduction in species number. Three of the most representative species were selected for the spatial distribution analysis: Solanum nigrum, Chenopodium album and Echinochloa crus-galli. The three species showed an aggregated spatial pattern and spatial stability over both years, although the herbicide effect is evident in the distribution of some of them in the space. These results could be taken into account when planning site-specific treatments in maize.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Results of subgroup analysis (SA) reported in randomized clinical trials (RCT) cannot be adequately interpreted without information about the methods used in the study design and the data analysis. Our aim was to show how often inaccurate or incomplete reports occur. First, we selected eight methodological aspects of SA on the basis of their importance to a reader in determining the confidence that should be placed in the author's conclusions regarding such analysis. Then, we reviewed the current practice of reporting these methodological aspects of SA in clinical trials in four leading journals, i.e., the New England Journal of Medicine, the Journal of the American Medical Association, the Lancet, and the American Journal of Public Health. Eight consecutive reports from each journal published after July 1, 1998 were included. Of the 32 trials surveyed, 17 (53%) had at least one SA. Overall, the proportion of RCT reporting a particular methodological aspect ranged from 23 to 94%. Information on whether the SA preceded/followed the analysis was reported in only 7 (41%) of the studies. Of the total possible number of items to be reported, NEJM, JAMA, Lancet and AJPH clearly mentioned 59, 67, 58 and 72%, respectively. We conclude that current reporting of SA in RCT is incomplete and inaccurate. The results of such SA may have harmful effects on treatment recommendations if accepted without judicious scrutiny. We recommend that editors improve the reporting of SA in RCT by giving authors a list of the important items to be reported.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The aim of the present study was to compare heart rate variability (HRV) at rest and during exercise using a temporal series obtained with the Polar S810i monitor and a signal from a LYNX® signal conditioner (BIO EMG 1000 model) with a channel configured for the acquisition of ECG signals. Fifteen healthy subjects aged 20.9 ± 1.4 years were analyzed. The subjects remained at rest for 20 min and performed exercise for another 20 min with the workload selected to achieve 60% of submaximal heart rate. RR series were obtained for each individual with a Polar S810i instrument and with an ECG analyzed with a biological signal conditioner. The HRV indices (rMSSD, pNN50, LFnu, HFnu, and LF/HF) were calculated after signal processing and analysis. The unpaired Student t-test and intraclass correlation coefficient were used for data analysis. No statistically significant differences were observed when comparing the values analyzed by means of the two devices for HRV at rest and during exercise. The intraclass correlation coefficient demonstrated satisfactory correlation between the values obtained by the devices at rest (pNN50 = 0.994; rMSSD = 0.995; LFnu = 0.978; HFnu = 0.978; LF/HF = 0.982) and during exercise (pNN50 = 0.869; rMSSD = 0.929; LFnu = 0.973; HFnu = 0.973; LF/HF = 0.942). The calculation of HRV values by means of temporal series obtained from the Polar S810i instrument appears to be as reliable as those obtained by processing the ECG signal captured with a signal conditioner.