27 resultados para Spatial Mixture Models
Resumo:
This study aimed to establish relationships between maize yield and rainfall on different temporal and spatial scales, in order to provide a basis for crop monitoring and modelling. A 16-year series of maize yield and daily rainfall from 11 municipalities and micro-regions of Rio Grande do Sul State was used. Correlation and regression analyses were used to determine associations between crop yield and rainfall for the entire crop cycle, from tasseling to 30 days after, and from 5 days before tasseling to 40 days after. Close relationships between maize yield and rainfall were found, particularly during the reproductive period (45-day period comprising the flowering and grain filling). Relationships were closer on a regional scale than at smaller scales. Implications of the crop-rainfall relationships for crop modelling are discussed.
Resumo:
The objective of this work was to select semivariogram models to estimate the population density of fig fly (Zaprionus indianus; Diptera: Drosophilidae) throughout the year, using ordinary kriging. Nineteen monitoring sites were demarcated in an area of 8,200 m2, cropped with six fruit tree species: persimmon, citrus, fig, guava, apple, and peach. During a 24 month period, 106 weekly evaluations were done in these sites. The average number of adult fig flies captured weekly per trap, during each month, was subjected to the circular, spherical, pentaspherical, exponential, Gaussian, rational quadratic, hole effect, K-Bessel, J-Bessel, and stable semivariogram models, using ordinary kriging interpolation. The models with the best fit were selected by cross-validation. Each data set (months) has a particular spatial dependence structure, which makes it necessary to define specific models of semivariograms in order to enhance the adjustment to the experimental semivariogram. Therefore, it was not possible to determine a standard semivariogram model; instead, six theoretical models were selected: circular, Gaussian, hole effect, K-Bessel, J-Bessel, and stable.
Resumo:
A statistical mixture-design technique was used to study the effects of different solvents and their mixtures on the yield, total polyphenol content, and antioxidant capacity of the crude extracts from the bark of Schinus terebinthifolius Raddi (Anacardiaceae). The experimental results and their response-surface models showed that ternary mixtures with equal portions of all the three solvents (water, ethanol and acetone) were better than the binary mixtures in generating crude extracts with the highest yield (22.04 ± 0.48%), total polyphenol content (29.39 ± 0.39%), and antioxidant capacity (6.38 ± 0.21). An analytical method was developed and validated for the determination of total polyphenols in the extracts. Optimal conditions for the various parameters in this analytical method, namely, the time for the chromophoric reaction to stabilize, wavelength of the absorption maxima to be monitored, the reference standard and the concentration of sodium carbonate were determined to be 5 min, 780 nm, pyrogallol, and 14.06% w v-1, respectively. UV-Vis spectrophotometric monitoring of the reaction under these conditions proved the method to be linear, specific, precise, accurate, reproducible, robust, and easy to perform.
Resumo:
Asian rust of soybean [Glycine max (L.) Merril] is one of the most important fungal diseases of this crop worldwide. The recent introduction of Phakopsora pachyrhizi Syd. & P. Syd in the Americas represents a major threat to soybean production in the main growing regions, and significant losses have already been reported. P. pachyrhizi is extremely aggressive under favorable weather conditions, causing rapid plant defoliation. Epidemiological studies, under both controlled and natural environmental conditions, have been done for several decades with the aim of elucidating factors that affect the disease cycle as a basis for disease modeling. The recent spread of Asian soybean rust to major production regions in the world has promoted new development, testing and application of mathematical models to assess the risk and predict the disease. These efforts have included the integration of new data, epidemiological knowledge, statistical methods, and advances in computer simulation to develop models and systems with different spatial and temporal scales, objectives and audience. In this review, we present a comprehensive discussion on the models and systems that have been tested to predict and assess the risk of Asian soybean rust. Limitations, uncertainties and challenges for modelers are also discussed.
Resumo:
Rust, caused by Puccinia psidii, is one of the most important diseases affecting eucalyptus in Brazil. This pathogen causes disease in mini-clonal garden and in young plants in the field, especially in leaves and juvenile shoots. Favorable climate conditions for infection by this pathogen in eucalyptus include temperature between 18 and 25 ºC, together with at least 6-hour leaf wetness periods, for 5 to 7 consecutive days. Considering the interaction between the environment and the pathogen, this study aimed to evaluate the potential impact of global climate changes on the spatial distribution of areas of risk for the occurrence of eucalyptus rust in Brazil. Thus, monthly maps of the areas of risk for the occurrence of this disease were elaborated, considering the current climate conditions, based on a historic series between 1961 and 1990, and the future scenarios A2 and B2, predicted by IPCC. The climate conditions were classified into three categories, according to the potential risk for the disease occurrence, considering temperature (T) and air relative humidity (RH): i) high risk (18 < T < 25 ºC and RH > 90%); ii) medium risk (18 < T < 25 ºC and RH < 90%; T< 18 or T > 25 ºC and RH > 90%); and iii) low risk (T < 18 or T > 25 ºC and RH < 90%). Data about the future climate scenarios were supplied by GCM Change Fields. In this study, the simulation model Hadley Centers for Climate Prediction and Research (HadCm3) was adopted, using the software Idrisi 32. The obtained results led to the conclusion that there will be a reduction in the area favorable to eucalyptus rust occurrence, and such a reduction will be gradual for the decades of 2020, 2050 and 2080 but more marked in scenario A2 than in B2. However, it is important to point out that extensive areas will still be favorable to the disease development, especially in the coldest months of the year, i.e., June and July. Therefore, the zoning of areas and periods of higher occurrence risk, considering the global climate changes, becomes important knowledge for the elaboration of predicting models and an alert for the integrated management of this disease.
Resumo:
This study aimed to evaluate the spatial variability of leaf content of macro and micronutrients. The citrus plants orchard with 5 years of age, planted at regular intervals of 8 x 7 m, was managed under drip irrigation. Leaf samples were collected from each plant to be analyzed in the laboratory. Data were analyzed using the software R, version 2.5.1 Copyright (C) 2007, along with geostatistics package GeoR. All contents of macro and micronutrients studied were adjusted to normal distribution and showed spatial dependence.The best-fit models, based on the likelihood, for the macro and micronutrients were the spherical and matern. It is suggest for the macronutrients nitrogen, phosphorus, potassium, calcium, magnesium and sulfur the minimum distances between samples of 37; 58; 29; 63; 46 and 15 m respectively, while for the micronutrients boron, copper, iron, manganese and zinc, the distances suggests are 29; 9; 113; 35 and 14 m, respectively.
Resumo:
The air dry-bulb temperature (t db),as well as the black globe humidity index (BGHI), exert great influence on the development of broiler chickens during their heating phase. Therefore, the aim of this study was to analyze the structure and the magnitude of the t db and BGHI spatial variability, using geostatistics tools such as semivariogram analysis and also producing kriging maps. The experiment was conducted in the west mesoregion of the states of Minas Gerais in 2010, in a commercial broiler house with heating system consisting of two furnaces that heat the air indirectly, in the firsts 14 days of the birds' life. The data were registered at intervals of five minutes in the period from 8 a.m. to 10 a.m. The variables were evaluated by variograms fitted by residual maximum likelihood (REML) testing the Spherical and Exponential models. Kriging maps were generated based on the best model used to fit the variogram. It was possible to characterize the variability of the t db and BGHI, which allowed observing the spatial dependence by using geostatistics techniques. In addition, the use of geostatistics and distribution maps made possible to identify problems in the heating system in regions inside the broiler house that may harm the development of chicks.
Management zones using fuzzy clustering based on spatial-temporal variability of soil and corn yield
Resumo:
Clustering soil and crop data can be used as a basis for the definition of management zones because the data are grouped into clusters based on the similar interaction of these variables. Therefore, the objective of this study was to identify management zones using fuzzy c-means clustering analysis based on the spatial and temporal variability of soil attributes and corn yield. The study site (18 by 250-m in size) was located in Jaboticabal, São Paulo/Brazil. Corn yield was measured in one hundred 4.5 by 10-m cells along four parallel transects (25 observations per transect) over five growing seasons between 2001 and 2010. Soil chemical and physical attributes were measured. SAS procedure MIXED was used to identify which variable(s) most influenced the spatial variability of corn yield over the five study years. Basis saturation (BS) was the variable that better related to corn yield, thus, semivariograms models were fitted for BS and corn yield and then, data values were krigged. Management Zone Analyst software was used to carry out the fuzzy c-means clustering algorithm. The optimum number of management zones can change over time, as well as the degree of agreement between the BS and corn yield management zone maps. Thus, it is very important take into account the temporal variability of crop yield and soil attributes to delineate management zones accurately.
Resumo:
There is a great concern in the literature for the development of neuroprotectant drugs to treat Parkinson's disease. Since anesthetic drugs have hyperpolarizing properties, they can possibly act as neuroprotectants. In the present study, we have investigated the neuroprotective effect of a mixture of ketamine (85 mg/kg) and xylazine (3 mg/kg) (K/X) on the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) or 6-hydroxydopamine (6-OHDA) rat models of Parkinson's disease. The bilateral infusion of MPTP (100 µg/side) or 6-OHDA (10 µg/side) into the substantia nigra pars compacta of adult male Wistar rats under thiopental anesthesia caused a modest (~67%) or severe (~91%) loss of tyrosine hydroxylase-immunostained cells, respectively. On the other hand, an apparent neuroprotective effect was observed when the rats were anesthetized with K/X, infused 5 min before surgery. This treatment caused loss of only 33% of the nigral tyrosine hydroxylase-immunostained cells due to the MPTP infusion and 51% due to the 6-OHDA infusion. This neuroprotective effect of K/X was also suggested by a less severe reduction of striatal dopamine levels in animals treated with these neurotoxins. In the working memory version of the Morris water maze task, both MPTP- and 6-OHDA-lesioned animals spent nearly 10 s longer to find the hidden platform in the groups where the neurotoxins were infused under thiopental anesthesia, compared to control animals. This amnestic effect was not observed in rats infused with the neurotoxins under K/X anesthesia. These results suggest that drugs with a pharmacological profile similar to that of K/X may be useful to delay the progression of Parkinson's disease.
Resumo:
Single-photon emission computed tomography (SPECT) is a non-invasive imaging technique, which provides information reporting the functional states of tissues. SPECT imaging has been used as a diagnostic tool in several human disorders and can be used in animal models of diseases for physiopathological, genomic and drug discovery studies. However, most of the experimental models used in research involve rodents, which are at least one order of magnitude smaller in linear dimensions than man. Consequently, images of targets obtained with conventional gamma-cameras and collimators have poor spatial resolution and statistical quality. We review the methodological approaches developed in recent years in order to obtain images of small targets with good spatial resolution and sensitivity. Multipinhole, coded mask- and slit-based collimators are presented as alternative approaches to improve image quality. In combination with appropriate decoding algorithms, these collimators permit a significant reduction of the time needed to register the projections used to make 3-D representations of the volumetric distribution of target’s radiotracers. Simultaneously, they can be used to minimize artifacts and blurring arising when single pinhole collimators are used. Representation images are presented, which illustrate the use of these collimators. We also comment on the use of coded masks to attain tomographic resolution with a single projection, as discussed by some investigators since their introduction to obtain near-field images. We conclude this review by showing that the use of appropriate hardware and software tools adapted to conventional gamma-cameras can be of great help in obtaining relevant functional information in experiments using small animals.
Differential effects of aging on spatial contrast sensitivity to linear and polar sine-wave gratings
Resumo:
Changes in visual function beyond high-contrast acuity are known to take place during normal aging. We determined whether sensitivity to linear sine-wave gratings and to an elementary stimulus preferentially processed in extrastriate areas could be distinctively affected by aging. We measured spatial contrast sensitivity twice for concentric polar (Bessel) and vertical linear gratings of 0.6, 2.5, 5, and 20 cycles per degree (cpd) in two age groups (20-30 and 60-70 years). All participants were free of identifiable ocular disease and had normal or corrected-to-normal visual acuity. Participants were more sensitive to Cartesian than to polar gratings in all frequencies tested, and the younger adult group was more sensitive to all stimuli tested. Significant differences between sensitivities of the two groups were found for linear (only 20 cpd; P<0.01) and polar gratings (all frequencies tested; P<0.01). The young adult group was significantly more sensitive to linear than to circular gratings in the 20 cpd frequency. The older adult group was significantly more sensitive to linear than to circular gratings in all spatial frequencies, except in the 20 cpd frequency. The results suggest that sensitivity to the two kinds of stimuli is affected differently by aging. We suggest that neural changes in the aging brain are important determinants of this difference and discuss the results according to current models of human aging.