42 resultados para Somatostatin analogues
Resumo:
This paper reviews the chemistry of nitrenium ions, the nitrogen analogues of the carbenium ions, showing the pioneering studies and some synthetic applications.
Resumo:
In the last years, several research groups have been working on the synthesis of new steroidal plant hormones called brassinosteroids (BS), which promote plant growth and better crops. Many synthetic targets and applications of these compounds and their analogues have been described in the literature. From Solanum species of the Distrito Federal, we isolated the steroidal alkaloid solasodine, which was then converted into our starting material, vespertiline. By functionalization of rings A and B, we have synthesized a new analogue of BS, with a 2alpha,3alpha-dihydroxy-6-one structure, typical of the naturally occurring BS castasterone, the immediate biosynthetic precursor of brassinolide.
Resumo:
In this paper we describe the results of a research effort developed in Laboratório de Avaliação e Síntese de Substancias Bioativas (LASSBio, UFRJ) in the utilization of Brazilian abundant natural product, safrole (1), the principal chemical constituent of Sassafras oil (Ocotea pretiosa), as an attractive synthon to access different chemical class of bioactive compounds, as prostaglandins analogues, non-steroidal antiinflammatory agents and antithrombotic compounds.
Resumo:
Conformational constraint is an approach which can be used to restrict the flexibility of peptide molecules and to provide information on the topographical requirements of receptors. The incorporation of conformationally constrained units in a peptide can lead to peptide analogues that present numerous advantages such as the potentialization of the pharmacological activity and the decrease of enzymatic degradation. This review discusses the peptide analogues containing a lactam or azalactam unit in their sequences. Of particular interest has been the replacement of a dipeptide motif in a peptide that simulates a beta-turn.
Resumo:
Chalcone (1) and its fluorinated derivatives 2-4, as well as their cyclic analogues 5-10, were synthesized through an aldol condensation reaction between the corresponding ketone and aldehyde. These compounds were characterized by IR, EIMS and ¹H and 13C NMR spectral data. Modern NMR techniques allowed us to conclude that the compounds obtained show E configuration. These techniques were also employed to investigate the equilibrium involving the s-cis and s-trans conformations of 1-4, with this equilibrium being dependent on the fluorine substitution on both aromatic rings, A or B. IR studies indicated that the yield of the s-cis conformation in the fluorinated derivatives is 57.4±1.4; 88.1±0.4 and 66.4±0.7%, for 2, 3 and 4, respectively, based on previous ¹H NMR calculations for chalcone. Theoretical calculations, using the MMX method, were employed to justify the variation of chemical shifts for the fluorinated derivatives and cyclic analogues. These chemical shifts are consequence of the anisotropic effect showed by the carbonyl group on these compounds.
Resumo:
Supramolecular chemistry is expected to keep a high developing pace in the next years, giving support to the advancement of molecular devices and nanotechnology. In this sense, porphyrins and their analogues should play a significant role as a consequence of their catalytic, electrocatalytic, photochemical and photoelectrochemical properties. In this review we focused on our own strategy based on coordination chemistry for the design and build-up of supermolecules and supramolecular structures constituted by polynuclear porphyrins and metalloporphyrins. Included are also their properties and potential applications.
Resumo:
In this paper, we describe a practical route for the synthesis of Biginelli compounds using In(OTf)3. To study the generality of this catalyst, several examples using aromatic aldehydes, 1,3-dicarbonyl compounds, urea, and thiourea were investigated. The present procedure provides an efficient modification of the classical Biginelli reaction, namely short reaction times and simple work-up, that not only preserves the simplicity of the original protocol but also produces excellent yields of 3,4-dihydropyridin-2(1H)-ones. Thiourea was used with similar success to provide the corresponding 3,4-dihydropyridin-2(1H)-thiones. In this case, the (+/-)-monastrol, antimitotic agent, was obtained in 92% yield and new thio analogues were synthesized.
Resumo:
Anatoxin-a and its analogues are azabicyclic alkaloids that represent one of the most powerful nicotinic agonists known for the nicotinic acetylcholine receptor (nAChR). Because of this potent mechanism of action, anatoxin-a and its derivatives represent a target for the discovery of novel drugs. Their syntheses are useful for environmental monitoring and also for pharmacokinetic/pharmacodynamic and toxicological studies. Some strategies for the synthesis of anatoxin-a and analogous compounds are described herein, covering the period from 1996 to the present date. In this review, emphasis is given to the chemical and toxicological aspects of some variants of anatoxin-a, including homoanatoxin-a and anatoxin-a(s).
Resumo:
In an attempt to reduce toxicity and widen the spectrum of activity of cisplatin and its analogues, much attention has been focused on designing new platinum complexes. This work reports the synthesis and characterization of novel compounds of the platinum (II) and platinum (IV) containing 2-furoic hydrazide acid and iodide as ligands. Although the prepared compounds do not present the classical structure of biologically active platinum analogues, they could be potentially active or useful as precursors to prepare antitumor platinum complexes. The reported compounds were characterized by ¹H NMR, 13C NMR, 195Pt NMR, IR and elemental analyses.
Resumo:
N-heterocyclic carbenes (NHCs) have become of considerable importance in modern organometallic chemistry and homogeneous catalysis. There are several advantages in the use NHCs over their phosphorus analogues, which explains the enormous development of NHC ligands in the field of organometallic catalysis in the past few years. In this article, we present an overview of the importance of the catalysts containing NHC ligands, their synthesis, some pertinent synthetic applications, and a brief comparison with other catalysts.
Resumo:
The development of new antiretroviral drugs is a dynamic process that is continuously fueled by identification of new molecular targets and new compounds for know targets. The current available drugs can be classified into five categories: nucleoside analogues reverse transcriptase inhibitors, non-nucleoside reverse transcriptase inhibitors, protease inhibitors, integrase inhibitors and entry inhibitors (fusion inhibitors and CCR5 antagonist). In addition, the maturation inhibitors may be considered as potential target for chemotherapeutic intervention. This review presents some anti-HIV agents that have already gone through the advance development process for final approval for the treatment of AIDS.
Resumo:
Considering the broad spectrum of biological activity of gamma-butyrolactone derivatives, we presented the synthesis of 3,4-dihalo-5-arylidenefuran-2(5H)-ones (17-21) and analogues (24-28) of the natural product nostoclide (7,8). Furanones 17-21 were synthesized from the condensation of aromatic aldehydes with lactones 14 and 15, that were obtained from mucobromic and mucochloric acids. Lactone 15 was converted into the intermediate 23 in 36% overall yield. Compound 23 was then transformed into the nostoclide analogues 24-28. Some of the compounds prepared showed antimicrobial activities against Escherichia coli, Staphylococcus aureus and Bacillus cereus comparable to commercial antibiotics.
Resumo:
Here we describe the total syntheses and characterization by elemental analyses, infrared and NMR spectroscopy of three new compounds analogous to avenaciolide, a bis-γ-lactone isolated from Aspergillus avenaceus that possesses antifungal activity, where the octyl group of the natural product was replaced by aromatic groups containing chlorine and fluorine atoms. The effects of the avenaciolide, the novel compounds and their synthetic precursors on mycelia development and conidia germination of Colletotrichum gloeosporioides and Fusarium solani were evaluated in vitro. The title compounds were almost as active as avenaciolide. The absolute structures of the chlorinated analogs were determined by X-ray diffraction analysis.
Resumo:
Biscationic amidines bind in the DNA minor groove and present biological activity against a range of infectious diseases. Two new biscationic compounds (bis-α,ω-S-thioureido, amino and sulfide analogues) were synthesized in good yields and fully characterized, and their interaction with DNA was also investigated. Isothermal titration calorimetry (ITC) was used to measure the thermodynamic properties of binding interactions between DNA and these ligands. A double stranded calf thymus DNA immobilized on an electrode surface was used to study the possible DNA-interacting abilities of these compounds towards dsDNA in situ. A remarkable interaction of these compounds with DNA was demonstrated and their potential application as anticancer agents was furthered.
Resumo:
A glassy carbon electrode modified with ruthenium hexacyanoferrate (RuOHCF) was investigated as an electrocatalyst for the detection of procaine with the aim of quantification in pharmaceutical and forensic samples. The RuOHCF films were prepared by electrochemical deposition, and the parameters used in this process (concentration of RuCl3, K3Fe(CN)6, temperature, and number of cyclic voltammograms recorded in the modification step) were carefully optimized. Based on the optimal conditions achieved, the RuOHCF modified electrode allows the determination of procaine at 0.0 V with a detection limit of 11 nmol L-1using square wave voltammetry.