18 resultados para Solid waste management
Resumo:
Landfill gas emissions are one of the main sources of anthropogenic methane (CH4), a major greenhouse gas. In this paper, an economically attractive alternative to minimize greenhouse gas emissions from municipal solid waste landfills was sought. This alternative consists in special biofilters as landfill covers with oxidative capacity in the presence of CH4. To improve the quality/cost ratio of the project, compost was chosen as one of the cover substrates and soil (Typic red yellow-silt-clay Podzolic) as the other. The performance of four substrates was studied in laboratory experiments: municipal solid waste (MSW) compost, soil, and two soil-compost at different proportions. This study aimed to evaluate the suitability and environmental compatibility as a means of CH4 oxidation in biofilters. Four biofilters were constructed in 60 cm PVC tubes with an internal diameter of 10 cm. Each filter contained 2.3 L of oxidizing substrate at the beginning of the experiment. The gas used was a mixture of CH4 and air introduced at the bottom of each biofilter, at a flow of 150 mL min-1, by a flow meter. One hundred days after the beginning of the experiment, the best biofilter was the MSW compost with an oxidation rate of 990 g m-3 day-1 , corresponding to an efficiency of 44 %. It can be concluded that the four substrates studied have satisfactory oxidative capacity, and the substrates can be used advantageously as cover substrate of MSW landfills.
Resumo:
The Laboratory Waste Management Program of the Chemistry Department of UFPR started on 1997 and was developed to meet the requirements of co-processing in cement kiln and those of the respective regulation. The in-lab procedures for waste collection and treatment were devised taking into account their cost, simplicity and wide range of application to the various types of residues generated. The program works with a five step annual journey : 1) Waste collection and treatment, 2) Bulk Storage, 3) Licensing (for transportation and co-processing), 4) Transportation and 5) Co-processing.
Resumo:
This research was developed by considering that the solid waste produced in the process of pig iron production represents the loss of raw materials and the increase in environmental problem. The charcoal based mini blast-furnace off gases dust named CHARCOK was collected from SIDERPA ¾ Siderúrgica Paulino Ltda, located in Sete Lagoas, Minas Gerais. The Charcok was characterized and classified according to ABNT (Associação Brasileira de Normas Técnicas) standard. The results showed that the Charcok should be classified as Class I Wastes ¾ "Hazard Wastes" because of its high concentration of phenols (54.5mg C6H5OH/kg). The Charcok had high concentration of iron and charcoal which can be used as energy source.