63 resultados para Sol-Gel process


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This review deals with silica based hybrid materials obtained by the sol-gel method. It involves concepts, classifications and important definitions regarding the sol-gel method that allows obtaining materials with organic and inorganic components dispersed in a molecular or nanometric level. We discuss the properties and characteristics of hybrid materials related to experimental synthesis conditions. We devote a special attention to the nanostructured materials, where the self-organization is imposed by the organic component. Finally, we present some important applications of these materials based on their specific properties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work aimed at the synthesis and characterization of particles of modified silica containing the organic filter dibenzoylmethane (DBM) by the hydrolytic sol-gel method, with modifications to the Stöber route. The structures of the resulting Xerogels were characterized by diffuse reflectance UV-VIS spectroscopy in the solid state, infrared absorption spectroscopy, Scanning Electron Microscopy (SEM) and 29Si Nuclear Magnetic Resonance (29Si NRM). The results showed favorable formation of hybrid organic-inorganic nanoparticles with efficient absorption/reflectance of radiation in the UV / VIS range, which enables their potential use as sunscreen.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Indium tin oxide nanoparticles were synthesized in two different sizes by a nonhydrolytic sol-gel method. These powders were then transformed into ITO via an intermediate metastable state at between 300 and 600 ºC. The presence of characteristic O-In-O and O-Sn-O bands at 480 and 670 cm-1 confirmed the formation of ITO. The X-ray diffraction patterns indicated the preferential formation of metastable hexagonal phase ITO (corundum type) as opposed to cubic phase ITO when the reflux time was less than 3 h and the heat treatment temperature was below 600 ºC. Particle morphology and crystal size were examined by scanning electron microscopy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ni-Co/Al2O3-MgO-ZrO2 nanocatalyst with utilization of two different zirconia precursors, namely, zirconyl nitrate hydrate (ZNH) and zirconyl nitrate solution (ZNS), was synthesized via the sol-gel method. The physiochemical properties of nanocatalysts were characterized by XRD, FESEM, EDX, BET and FTIR analyses and employed for syngas production from CO2-reforming of CH4. XRD patterns, exhibiting proper crystalline structure and homogeneous dispersion of active phase for the nanocatalyst ZNS precursor employed (NCAMZ-ZNS). FESEM and BET results of NCAMZ-ZNS presented more uniform morphology and smaller particle size and consequently higher surface areas. In addition, average particle size of NCAMZ-ZNS was 15.7 nm, which is close to the critical size for Ni-Co catalysts to avoid carbon formation. Moreover, FESEM analysis indicated both prepared samples were nanoscale. EDX analysis confirmed the existence of various elements used and also supported the statements made in the XRD and FESEM analyses regarding dispersion. Based on the excellent physiochemical properties, NCAMZ-ZNS exhibited the best reactant conversion across all of the evaluated temperatures, e.g. CH4 and CO2 conversions were 97.2 and 99% at 850 ºC, respectively. Furthermore, NCAMZ-ZNS demonstrated a stable yield with H2/CO close to unit value during the 1440 min stability test.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Híbridos siloxano-PMMA apresentando ligações covalentes entre as fases orgânica e inorgânica foram preparados a partir do processo sol-gel. O efeito da fração em massa de fase siloxano no mecanismo de secagem dos géis a 50ºC foi estudado através de medidas de perda de massa e retração linear. Pode-se distinguir os três períodos clássicos de secagem já observados em géis inorgânicos. A duração do primeiro período (estágio de velocidade constante) aumenta com o teor de polímero, o que pode ser explicado pelo menor tamanho dos poros presentes nos géis contendo concentrações elevadas de PMMA. Com o aumento da concentração da fase siloxano observou-se o aumento da perda de massa total e da retração linear final do material após o terceiro período de secagem. Este comportamento deve-se ao aumento do teor de água livre resultante da policondensação das espécies siliciosas nestes sistemas, o que leva a uma maior plasticidade do material. O volume poroso do material aumenta com o teor de fase siloxano, o que é consistente com a perda de massa observada durante a secagem.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A hidroxiapatita [Ca10(PO4)6(OH)2, HA] foi sintetizada utilizando-se a rota sol-gel partindo-se de ácido fosfórico e nitrato de cálcio como precursores de cálcio e fósforo, respectivamente e como solvente utilizou-se o metanol na preparação do sol que posteriormente será utilizado na obtenção de recobrimentos de hidroxiapatita sobre substratos de ligas de titânio. O sol permaneceu estável e não ocorreu gelatinização em temperatura ambiente durante sete dias. O sol transformou-se em um gel branco somente após a remoção do solvente a 100ºC. O produto assim obtido foi calcinado em 300°C, 500°C e 700°C e caracterizou-se por DRX, FT-IR, MEV/EDS e TGA/DSC. As fases de HA sintetizada tornaram-se estáveis sem sub-produtos a 700°C. A difração de raios X mostrou que a estrutura apatita é aparente em 300°C. O tamanho do cristal e o teor de HA aumentaram com o aumento da temperatura de calcinação. A análise por MEV mostrou a presença de poros que são importantes para aplicações biomédicas, favorecendo a adesão entre o tecido ósseo neoformado e a apatita sintética, ou seja, osseointegração.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Este trabalho descreve um método de modificação do TiO2 obtido pelo processo sol-gel, através da adição de óxido de cério no momento da síntese. O material foi caracterizado por adsorção de N2 a 77K. A adição de CeO2 aumenta a área específica do catalisador em 135% e reduz o diâmetro de poros. A atividade catalítica desses materiais foi verificada frente à reação de foto-decomposição do hidrogenoftalato de potássio e comparada ao TiO2 comercial P25 da Degussa.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work describes the sol-gel mixed oxide SiO2/TiO2 property, ST, as prepared, and submitted to heat treatment a 773 K, STC. SEM and EDS images show, within magnification used, a uniform distribution of the TiO2 particles in SiO2/TiO2 matrix. Both, ST and STC adsorb hydrogen peroxide on the surface and through EPR and UV-Vis diffuse reflectance spectra, it was possible to conclude that the species on the surface is the peroxide molecule attached to the Lewis acid site of titanium particle surface, alphaTi(H2O2)+. As the material is very porous, presumably the hydrogen peroxide molecule is confined in the matrix pores on the surface, a reason why the adsorbed species presents an exceptional long lived stability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

SnO2 thin layers, prepared from aqueous colloidal suspensions by the sol-gel process, have been dip-coated on commercial borosilicate glasses. The effect of the conditions of deposition on the optical and structural characteristics of the thin layers was analysed by UV-Vis spectroscopy, x-ray reflectometry and electron scanning microscopy. Layers prepared with withdrawal speed in between 0.1 and 10cm/min show thickness smaller than 90nm, roughness of the order of 2nm and transmittance higher than 80%, resulting in good optical quality samples. The roughness increases from 2 to 11nm as the withdrawal speed increases from 10 to 80cm/min, what seems to be associated to the enlargement of the layers thickness (> 90nm). The measurements of mass loss, done after etching with fluoridric acid show that the coated samples are more corrosion resistant than the uncoated borosilicate glass.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An overview of the experimental procedures to prepare lamellar samples of silica, as well as the reactivity and possible applications of this kind of material is presented. Special attention is focused on the obtained materials by using neutral dialkylamine route through sol-gel process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The conditions for the preparation of luminescent materials, consisting of Eu3+ ions entrapped in a titanium matrix, in the forma of a thin film, using the sol-gel process, are described. The films were obtained from sols prepared with TEOS and TEOT, in the presence of acetylacetone as the hidrolysis-retarding agent, using the dip-coating and spin-coating techniques. The influence of these techniques on the films based on titanium and silicon are presented. The Eu3+ was used as a luminescent probe. The films have been characterized by luminescence, reflection and transmittance. The thickness of the films could be related to the preparation procedure. Transparent thin films have been prepared by dip-coating technique.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Resorcinol-formaldehyde (RF) organic gels have been extensively used to produce carbon aerogels. The organic gel synthesis parameters greatly affect the structure of the resulting aerogel. In this study, the influence of the catalyst quantity on the polymeric solution sol-gel process was investigated. Sodium carbonate was used as a basic catalyst. RF gels were synthesized with a resorcinol to formaldehyde molar ratio of 0.5, a resorcinol to catalyst (R/C) molar ratio equal to 50 or 300, and a resorcinol to solvent ratio of 0.1 g mL-1. The sol-gel process was evaluated in situ by Fourier transform infrared spectroscopy using a universal attenuated total reflectance sensor and measurements of the kinematic viscosity. The techniques showed the evolution of the sol-gel process, and the results showed that the lower catalyst quantity induced a higher gel point, with a lower viscosity at the gel point. Differential scanning calorimetry was used to investigate the thermal behavior of the RF dried gel, and results showed that the exothermic event related to the curing process was shifted to higher temperatures for solutions containing higher R/C ratios.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a study on the production of silica gel in hydrothermal process using residual rice husk ash. Measurements of the chemical composition, X-ray diffraction, infrared spectroscopy, particle size distribution, and pozzolanic activity were carried out in order to characterize the obtained material, and the optimal silica gel was selected for use as a mineral additive in cement pastes. The compressive strengths were determined for cement pastes containing silica gel (0.0, 2.5 or 5% by mass) in different times. The results indicate that the mixtures containing silica gel showed improved mechanical behavior over all time periods evaluated.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The sols for thin electrochromic coatings of Nb2O5 were obtained by synthesis of the niobium butoxide from BuONa and NbCl5. The ~300nm thick films were deposited by dip-coating technique from the alkoxide solution and calcined at 560ºC in O2 atmosphere during 3 hours. The particles size of niobium oxide (V) powder (~20mm) was obtained from x-ray diffraction using the Scherrer equation. The coatings were characterized by cyclic voltammetry and cronoamperommetry techniques. The spectral variation of the optical transmittance were determined in situ as a function of the cyclical potencial and memory effect. The insertion process of lithium is reversible and change the film color from transparent (T=80%) to dark blue (T=20%).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The physical-chemical process of swelling in water-based gel of natural polymers is investigated with the purpose of applying these systems to biomedical materials for controlled release of drugs. In this work we develop a study about the sol-gel transition of solutions of chitosan in the presence of formaldehyde and glutaraldehyde like crosslinking agents and we have determined the effect of many aditives in the time of gelification from the elaborated sistems. The phisical-chemistry process of swelling of the formed gels was evaluated in function of the degree of crosslinking of the incorporated aditives and the pH. Gelling times of chitosan solutions were obtained using viscosimetric measurement, in the pre-gel state, as well as condutivity ones.The results obtained suggest that component concentration modifies the kinetic profile of the transition and the swelling behavior. Regarding H+ content, the gels were highly susceptible to swelling in acidic conditions, which characterize this system as pH - sensitive.